首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish specific correspondences between notions of economics and statistical mechanics. There are several situations wherein a rather accurate correspondence has already been established, for instance in utility theory for exchange economy with quasilinear utility function, which has been mapped to analogous thermodynamics. We discuss how statistical mechanics can be applied to define the efficiency of financial markets, via a mapping of stock fluctuations to the Random Energy Model (REM) at particular temperatures. We introduce the concept of reflection in economics; the effective reflection number, in particular, is found to be crucial in understanding the self-regulation of the market. We also establish a qualitative similarity between market with derivatives and certain statistical mechanics models. Such an analogy supports a hypothesis that financial derivatives are antagonistic to the self-regulation of financial markets. As a whole, our analysis is complementary to established concepts and methods of neoclassical economics for markets without derivatives.  相似文献   

2.
In kinetic exchange models, agents make transactions based on well-established microscopic rules that give rise to macroscopic variables in analogy to statistical physics. These models have been applied to study processes such as income and wealth distribution, economic inequality sources, economic growth, etc., recovering well-known concepts in the economic literature. In this work, we apply ensemble formalism to a geometric agents model to study the effect of saving propensity in a system with money, credit, and debt. We calculate the partition function to obtain the total money of the system, with which we give an interpretation of the economic temperature in terms of the different payment methods available to the agents. We observe an interplay between the fraction of money that agents can save and their maximum debt. The system’s entropy increases as a function of the saved proportion, and increases even more when there is debt.  相似文献   

3.
4.
Models in econophysics, i.e., the emerging field of statistical physics that applies the main concepts of traditional physics to economics, typically consist of large systems of economic agents who are characterized by the amount of money they have. In the simplest model, at each time step, one agent gives one dollar to another agent, with both agents being chosen independently and uniformly at random from the system. Numerical simulations of this model suggest that, at least when the number of agents and the average amount of money per agent are large, the distribution of money converges to an exponential distribution reminiscent of the Boltzmann–Gibbs distribution of energy in physics. The main objective of this paper is to give a rigorous proof of this result and show that the convergence to the exponential distribution holds more generally when the economic agents are located on the vertices of a connected graph and interact locally with their neighbors rather than globally with all the other agents. We also study a closely related model where, at each time step, agents buy with a probability proportional to the amount of money they have, and prove that in this case the limiting distribution of money is Poissonian.  相似文献   

5.
We build a statistical ensemble representation of two economic models describing respectively, in simplified terms, a payment system and a credit market. To this purpose we adopt the Boltzmann–Gibbs distribution where the role of the Hamiltonian is taken by the total money supply (i.e. including money created from debt) of a set of interacting economic agents. As a result, we can read the main thermodynamic quantities in terms of monetary ones. In particular, we define for the credit market model a work term which is related to the impact of monetary policy on credit creation. Furthermore, with our formalism we recover and extend some results concerning the temperature of an economic system, previously presented in the literature by considering only the monetary base as a conserved quantity. Finally, we study the statistical ensemble for the Pareto distribution.  相似文献   

6.
We analyze the network of cross-border bank lending connections among countries from 1977 to 2018. The network includes core countries that lend money and peripheral countries that borrow money from core countries. In nowadays highly connected banking network, financial crisis that start from a country can spread to other countries very fast and cause global affects. We use principal component analysis (PCA) to find the influential lending (core) countries in this network over the years and clusters of borrowing (peripheral) countries related to these impactful core countries. We find three clusters of peripheral countries, with some constant and some changing members over time. This can be a sign of changes in the financial or political interactions among countries. The changes in the role of core countries and how these roles get affected by the important financial crisis in the past decades is investigated. Among 31 of core countries, 7 countries have a partially or constantly important role in the network including France, United Kingdom, United States, Japan, Germany, Chinese Taipei and Switzerland.  相似文献   

7.
In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money must follow the exponential Boltzmann-Gibbs law characterized by an effective temperature equal to the average amount of money per economic agent. We demonstrate how the Boltzmann-Gibbs distribution emerges in computer simulations of economic models. Then we consider a thermal machine, in which the difference of temperatures allows one to extract a monetary profit. We also discuss the role of debt, and models with broken time-reversal symmetry for which the Boltzmann-Gibbs law does not hold. The instantaneous distribution of money among the agents of a system should not be confused with the distribution of wealth. The latter also includes material wealth, which is not conserved, and thus may have a different (e.g. power-law) distribution. Received 22 June 2000  相似文献   

8.
A simple computer simulation model of a closed market on a fixed network with free flow of goods and money is introduced. The model contains only two variables: the amount of goods and money beside the size of the system. An initially flat distribution of both variables is presupposed. We show that under completely random rules, i.e. through the choice of interacting agent pairs on the network and of the exchange rules that the market stabilizes in time and shows diversification of money and goods. We also indicate that the difference between poor and rich agents increases for small markets, as well as for systems in which money is steadily deduced from the market through taxation. It is also found that the price of goods decreases when taxes are introduced, likely due to the less availability of money.  相似文献   

9.
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.  相似文献   

10.
This paper examines relations between econophysics and the law of entropy as foundations of economic phenomena. Ontological entropy, where actual thermodynamic processes are involved in the flow of energy from the Sun through the biosphere and economy, is distinguished from metaphorical entropy, where similar mathematics used for modeling entropy is employed to model economic phenomena. Areas considered include general equilibrium theory, growth theory, business cycles, ecological economics, urban–regional economics, income and wealth distribution, and financial market dynamics. The power-law distributions studied by econophysicists can reflect anti-entropic forces is emphasized to show how entropic and anti-entropic forces can interact to drive economic dynamics, such as in the interaction between business cycles, financial markets, and income distributions.  相似文献   

11.
Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach of the socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain income and spending money for their needs. To each individual a certain time variable amount of money is associated - this meaning him/her phase space coordinate. In this way the exponential distribution of money in a closed economy is explicitly found. The extension of this result, including states near the equilibrium, give us the possibility to take into account the regular increase of the total amount of money, according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic time series. Received 25 February 2002 / Received in final form 11 July 2002 Published online 19 November 2002  相似文献   

12.
13.
In this paper, the distribution and inequality of firm sizes is evaluated for the Korean firms listed on the stock markets. Using the amount of sales, total assets, capital, and the number of employees, respectively, as a proxy for firm sizes, we find that the upper tail of the Korean firm size distribution can be described by power-law distributions rather than lognormal distributions. Then, we estimate the Zipf parameters of the firm sizes and assess the changes in the magnitude of the exponents. The results show that the calculated Zipf exponents over time increased prior to the financial crisis, but decreased after the crisis. This pattern implies that the degree of inequality in Korean firm sizes had severely deepened prior to the crisis, but lessened after the crisis. Overall, the distribution of Korean firm sizes changes over time, and Zipf’s law is not universal but does hold as a special case.  相似文献   

14.
The two articles in this issue of the European Physical Journal Special Topics cover topics in Econophysics and GPU computing in the last years. In the first article [1], the formation of market prices for financial assets is described which can be understood as superposition of individual actions of market participants, in which they provide cumulative supply and demand. This concept of macroscopic properties emerging from microscopic interactions among the various subcomponents of the overall system is also well-known in statistical physics. The distribution of price changes in financial markets is clearly non-Gaussian leading to distinct features of the price process, such as scaling behavior, non-trivial correlation functions and clustered volatility. This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.  相似文献   

15.
We present a nonlinear stochastic differential equation (SDE) which mimics the probability density function (PDF) of the return and the power spectrum of the absolute return in financial markets. Absolute return as a measure of market volatility is considered in the proposed model as a long-range memory stochastic variable. The SDE is obtained from the analogy with an earlier proposed model of trading activity in the financial markets and generalized within the nonextensive statistical mechanics framework. The proposed stochastic model generates time series of the return with two power law statistics, i.e., the PDF and the power spectral density, reproducing the empirical data for the one-minute trading return in the NYSE.  相似文献   

16.
We consider a simple model of a closed economic system where the total money is conserved and the number of economic agents is fixed. Analogous to statistical systems in equilibrium, money and the average money per economic agent are equivalent to energy and temperature, respectively. We investigate the effect of the saving propensity of the agents on the stationary or equilibrium probability distribution of money. When the agents do not save, the equilibrium money distribution becomes the usual Gibb's distribution, characteristic of non-interacting agents. However with saving, even for individual self-interest, the dynamics becomes cooperative and the resulting asymmetric Gaussian-like stationary distribution acquires global ordering properties. Intriguing singularities are observed in the stationary money distribution in the market, as functions of the marginal saving propensity of the agents. Received 2 May 2000  相似文献   

17.
18.
We analyze the price return distributions of currency exchange rates, cryptocurrencies, and contracts for differences (CFDs) representing stock indices, stock shares, and commodities. Based on recent data from the years 2017–2020, we model tails of the return distributions at different time scales by using power-law, stretched exponential, and q-Gaussian functions. We focus on the fitted function parameters and how they change over the years by comparing our results with those from earlier studies and find that, on the time horizons of up to a few minutes, the so-called “inverse-cubic power-law” still constitutes an appropriate global reference. However, we no longer observe the hypothesized universal constant acceleration of the market time flow that was manifested before in an ever faster convergence of empirical return distributions towards the normal distribution. Our results do not exclude such a scenario but, rather, suggest that some other short-term processes related to a current market situation alter market dynamics and may mask this scenario. Real market dynamics is associated with a continuous alternation of different regimes with different statistical properties. An example is the COVID-19 pandemic outburst, which had an enormous yet short-time impact on financial markets. We also point out that two factors—speed of the market time flow and the asset cross-correlation magnitude—while related (the larger the speed, the larger the cross-correlations on a given time scale), act in opposite directions with regard to the return distribution tails, which can affect the expected distribution convergence to the normal distribution.  相似文献   

19.
The effects of saving and spending patterns on holding time distribution of money are investigated based on the ideal gas-like models. We show the steady-state distribution obeys an exponential law when the saving factor is set uniformly, and a power law when the saving factor is set diversely. The power distribution can also be obtained by proposing a new model where the preferential spending behavior is considered. The association of the distribution with the probability of money to be exchanged has also been discussed.Received: 4 September 2003, Published online: 19 November 2003PACS: 89.65.Gh Economics; econophysics, financial markets, business and management - 87.23.Ge Dynamics of social systems - 05.10.-a Computational methods in statistical physics and nonlinear dynamics - 02.50.-r Probability theory, stochastic processes, and statistics  相似文献   

20.
Toyoyuki Kitamura 《Physica A》2010,389(13):2586-2596
The mechanism of the financial panic is clarified by the two band model in a simplified capitalist society from statistical mechanics. A financial panic occurs on an occasion of the supercooling process to avoid completing the financial (buy-sell) cycles under the circumstances: extremely high consumption causes enormous bubbles of buy-sell pairs of securities in financial markets, which form the configuration entropy (the Kauzmann entropy) and trigger a chain recession. As society cools down, the dynamical processes of financial panic are governed by universal features such as the Kauzmann entropy crisis and the drastic drop of the dynamical motions (the VTF law), which also cause further recession so that a chain recession occurs. And the financial markets eventually freeze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号