首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exciton effects on the interband absorption spectra in near-surface square and semiparabolic quantum wells under intense laser field are studied taking into account the correct dressing effect for the confinement potential and electrostatic self-energy due to the repulsive interaction between carriers and their image charges. We found that for near-surface quantum wells with different shapes the laser field induces significant effects on their electronic and optical properties. The numerical results for the InGaAs/GaAs system show that the red-shift of the absorption peak induced by the increasing cap layer can be effectively compensated using the blue-shift caused by the enhanced laser parameter. In square quantum well without laser field our theoretical values for the absorption peak position are in good agreement with the available experimental data. As a key result, we conclude that the optical properties in near-surface quantum wells can be tuned by tailoring the heterostructure parameters: well shape, capped layer thickness and/or dielectric mismatch as well as the external field radiation strength.  相似文献   

2.
By using a nonperturbative theory within the effective mass approximation, the combined effects of the intense laser radiation and applied magnetic field on the shallow-donor binding energy in inverse parabolic quantum wells are investigated. It is found that: (i) the increasing of the laser intensity dramatically modifies the confinement potential shape leading to the formation of a multiple well potential within the structure; (ii) the binding energy as a function of the impurity position and external fields follows a similar behavior to that observed for the spatial distribution of the electron wave function; (iii) the peak positions in valence-to-donor-related absorption spectra can be tuned at specific energies by changing the external field strengths. Our results suggest that this profile could be used in designing new devices with properties controlled by laser and magnetic fields.  相似文献   

3.
The laser field dependence of the linear and nonlinear intersubband optical absorption in different graded quantum wells (GQWs) is investigated in the effective mass approximation. Results obtained show that the position and the magnitude of the linear and total absorption coefficients depend on the laser parameter and the shape of GQW. The resonant peak of total absorption coefficient can be bleached at sufficiently high incident optical intensities. Such a dependence of the exciting optical intensity on the external field strengths in different GQWs can be very useful for several potential device applications. It should point out that by applying the laser field we can obtain a blue shift or a red shift in the intersubband optical transitions.  相似文献   

4.
A four-state model considering the relative velocity distribution function for calculating the cross section of laserinduced collisional energy transfer in a Sr-Li system is presented and profiles of laser-induced collision cross section are obtained.The resulting spectra obtained from different intermediate states are strongly asymmetrical in an opposite asymmetry.Both of the two intermediate states have contributions to the final state,and none of the intermediate states should be neglected.The peak of the laser-induced collisional energy transfer(LICET) profile shifts toward the red and the FWHM becomes narrower obviously with laser field intensity increasing.A cross section of 1.2 × 10-12 cm 2 at a laser field intensity of 2.17 × 10 7 V/m is obtained,which indicates that this collision process can be an effective way to transfer energy selectively from a storage state to a target state.The existence of saturation for cross section with the increase of the laser intensity shows that the high-intensity redistribution of transition probabilities is an important feature of this process,which is not accounted for in a two-state treatment.  相似文献   

5.
A method of clarifying bioaerosol particles is proposed based on T-matrix. Size and shape characterizations are simultaneously acquired for individual bioaerosol particles by analyzing the spatial distribution of scattered light. The particle size can be determined according to the scattering intensity,while shape information can be obtained through asymmetry factor(AF) . The azimuthal distribution of the scattered light for spherical particles is symmetrical,whereas it is asymmetrical for non-spherical ones,and the asymmetry becomes intense with increasing asphericity. The calculated results denote that the 5 –10 scattering angle is an effective range to classify the bioaerosol particles that we are concerned of. The method is very useful in real-time environmental monitoring of particle sizes and shapes.  相似文献   

6.
A new design of the U-type resonator is described. In this way, a laser beam with symmetrical intensity profile (regarding to a symmetry plane) can be extracted from an active medium that exhibits gain asymmetry along one of the transverse directions. The whole area of the active medium cross-section can be used, and consequently the laser efficiency will be increased. This resonator structure was applied for efficiency power extraction (as a low order TEM modes laser beam) from a DC excited transverse flow CO2 laser with cylindrical geometry. Although the cross-section area of the discharge was entirely used (including the cathode fall region), a symmetrical intensity profile of the laser beam (regarding to the two orthogonal symmetry planes) was obtained in the near field as well as in the far field; the gain asymmetry along the flow direction was compensated by the gas circulation fluidodynamical circuit with two counterflowing discharge channels. A double-U optical resonator was introduced in order to provide a laser beam with axial symmetry.For the practical construction of these two types of optical resonators we have developed two new types of 90° deflection elements: the first one, which does not reverse the image (and which has the properties of the pentaprism), and the second one, which rotates the image with 90° angle. Both elements exhibit good focusability if they are equipped with two concave mirrors.  相似文献   

7.
We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico-and nanosecond pulsed laser radiations, as well as the physical origin responsible for these processes. We have shown that depending on the duration of the laser pulse,the mechanisms of laser modification of such aggregates can be associated both with changes in the resonant properties of the particles due to their heating and melting(picosecond irradiation mode) and with the particle shifts in the resonant domains of the aggregates(nanosecond pulses) which depend on the wavelength, intensity, and polarization of the radiation.These mechanisms result in formation of a narrow dip in the plasmonic absorption spectrum of the aggregates near the laser radiation wavelength and affect the shape and position of the dip. The effect of polydispersity of nanoparticle aggregates on laser photochromic reaction has been studied.  相似文献   

8.
The coefficient of interband absorption of a weak electromagnetic wave by quantum wires in a transverse magnetic field and an intense laser radiation field is calculated. It is shown that, if the laser radiation frequency is equal either to the size quantization frequency (dimensional infrared resonance) or to a hybrid frequency (magnetoinfrared resonance), laser illumination can determine the shape of absorption oscillations. In particular, it is shown that the second magnetoabsorption peak is split into two peaks, the half-widths of which and the distance between which depend on the intensity of resonance laser radiation. The influence of the polarization of IR radiation on the interband absorption in quantum wires is discussed. The dynamics of the frequency dependence of the optical absorption coefficient with increasing intensity of resonance laser radiation is studied.  相似文献   

9.
It is shown that a general shaped laser beam will eventually approach a Gaussian average intensity profile after propagation in turbulent atmosphere. In our formulation, source field at the exit plane of the laser is taken as the product of arbitrary functions of source transverse coordinates with Gaussian exponential modulations. Following the expansion of the arbitrary functions in terms of Hermite polynomials, the average receiver intensity expression is derived using the extended Huygens-Fresnel principle and the conditions for the intensity profile to assume a Gaussian shape are stated. The results are illustrated by simulating various source field distributions.  相似文献   

10.
The suitability of titanium nitride (TiN) for GaAs surface passivation and protection is investigated. A 2-6-nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 ° C on top of InGaAs/GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer. TiN passivation does not affect the surface morphology of the samples, but increases significantly the photoluminescence intensity and carrier lifetime of the NSQWs, and also provides long-term protection of the sample surface. This study shows that ALD TiN coating is a promising low-temperature method for ex situ GaAs surface passivation.  相似文献   

11.
The subband structure and optical properties of a cylindrical quantum well wire under intense non-resonant laser field are investigated by taking into account the correct dressing effect for the confinement potential. The energy levels and wave functions are calculated within the effective mass- approximation using a finite element method. It is found that the absorption coefficient and the saturation intensity are strongly affected by the laser amplitude and frequency as well as by the incident light polarization. As a key result, a large anisotropy in the linear and nonlinear optical absorptions for very intense laser field is predicted. These effects can be useful for the design of polarization sensitive devices.  相似文献   

12.
Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.  相似文献   

13.
Multiphoton excitations and nonlinear optical properties of exciton states in GaAs/Al_xGa_(1-x)As coupled quantum well structure have been theoretically investigated under the influence of a time-varying high-intensity terahertz(THz) laser field. Non-perturbative Floquet theory is employed to solve the time-dependent equation of motion for the laser-driven excitonic quantum well system. The response to the field parameters, such as intensity and frequency of the laser electric field on the state populations, can be used in various optical semiconductor device applications, such as photodetectors,sensors, all-optical switches, and terahertz emitters.  相似文献   

14.
Brain asymmetry is a phenomenon well known for handedness and has been studied in motor cortices. However, few quantitative studies on asymmetrical cortical activity in motor areas have been conducted. In this study, we systematically investigated asymmetrical cortical activity in motor areas during sequential finger movement by quantitatively analyzing functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses. The norm of BOLD signal percentage of change was introduced to quantitatively measure the BOLD signal intensity change difference between the left and right motor areas. The results of the data collected from six subjects show that the norm of BOLD signal percentage of change in the right motor area is higher than that in the left motor area for two-hand movement (P=.0059) and single-hand movement (P=.0279) with right-handedness. These results from fMRI show the asymmetry of motor areas and may suggest that the left hemisphere motor area comes into being as an adaptation system that needs few neuron cells only to finish any movement task for right-handedness. The activation intensity in the left motor area is reduced with normal right finger movement. The activation intensity in the right motor area is obviously higher than that in the left motor area.  相似文献   

15.
We analyse this laser's phase diagram: the properties of its steady states when varying the linear phase anisotropy, the intensity coupling asymmetry, or the pump rate. Most interesting is a parameter window in which the laser output is a limit cycle, and not only the intensity but also the electric field polarization varies periodically. The dependence of the polarization on the laser parameters is evaluated for various states.  相似文献   

16.
为了减小线结构光传感器光源对测量精度的影响 ,设计了一种集整形和能量校正为一体的非线性光源单向扩展光路。应用反高斯分布的液体吸收滤光镜 ,实现了高斯光束强度的径向均匀化。并应用矩形光阑和两个相互垂直放置的柱面镜 ,对准直后的激光束进行整形 ,分别在不同的方向进行拉伸和压缩 ,得到了形状理想的线光源。此技术已成功应用于BGA芯片管脚的三维尺寸测量中。  相似文献   

17.
We study partial detachment rate and photodetachment asymmetry of F detached by half-cycle linearly polarized laser field using numerical simulation. Similar to photodetachment for negative ions in few-cycle laser fields, we find that partial detachment rates of a couple opposite directions in the above-threshold detachment of F are not equal, the detachment is asymmetric. Furthermore, the photodetachment asymmetry degree increases with carrier-envelop phase (CEP) as the peak laser intensity becoming stronger or the pulse width becoming shorter. The maximal asymmetry degree is stronger with higher laser intensity. We confirm the effect of the CEP, laser intensity and pulse width on the above-threshold detachment of F in half-cycle laser fields. It provides a possible way to determine the CEP of half-cycle laser fields by measuring detached photoelectrons.  相似文献   

18.
The effect of wavelength variations on the backscattering of laser light from contoured or shaped objects is analyzed. In order to consider remote sensing by frequency-scan means, equations are derived for the transforms of the signal field and its intensity and for the correlation functions appropriate in the study of rough objects. In these expressions, interesting dependences upon object shape, roughness, and orientation are found. In experiments using roughened plates and spheres illuminated by a tunable dye laser, good agreement with theory is observed.  相似文献   

19.
Au nanorods dispersed in aqueous solution were prepared with the electrochemical method. The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance absorption of the nanorods. The third-order optical nonlinear properties are investigated by Z-scans. The signs of the nonlinear absorption coemcient and refractive index are reversed as the intensity of incident laser increases, which is due to the shape change of the gold nanoparticles melted by the intense laser pulses.  相似文献   

20.
In the present work, we investigated the simultaneous effects of intense non-resonant laser and external magnetic fields on the electronic structure and the nonlinear optical properties (the light absorption, the refractive index and the group velocity) of GaAs/Al0.3Ga0.7As near-surface quantum well. The calculations were performed within the compact density-matrix formalism under the steady state conditions with the use of the effective mass approximation. The obtained results show that the electronic structure and, consequently, the optical properties are sensitive to the dressed well induced asymmetry and the effects of the magnetic field. By changing the intensities of the magnetic and laser fields, we can obtain the control of the group velocity, without the need for the growth of many different samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号