首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We discuss the parity-violating left–right asymmetries (LRAs) in Möller scattering at the International Linear Collider (ILC) induced by doubly charged Higgs bosons in models with SU(2) L triplet and singlet scalar bosons, which couple to the left- and right-handed charged leptons, respectively. These bosons are important in scenarios for the generation of the neutrino mass. We demonstrate that the contributions to the LRAs from the triplet and singlet bosons are opposite to each other. In particular, we show that the doubly charged Higgs boson from the singlet scalar can be tested at the ILC by using the resonance effect.  相似文献   

2.
We present the symmetry realization of the phenomenologically viable Frampton-Glashow-Marfatia (FGM) two zero texture neutrino mass matrices in the flavor basis within the framework of the type (I+II) seesaw mechanism natural to SO(10) grand unification. A small Abelian cyclic symmetry group Z3 is used to realize these textures except for class C for which the symmetry is enlarged to Z4. The scalar sector is restricted to the Standard Model (SM) Higgs doublet to suppress the flavor changing neutral currents. Other scalar fields used for symmetry realization are at the most two scalar triplets and, in some cases, a complex scalar singlet. Symmetry realization of one zero textures has, also, been presented.  相似文献   

3.
4.
Chao Guo  Shu-Yuan Guo  Yi Liao 《中国物理C(英文版)》2019,43(10):103102-103102-10
We study the phenomenology of a model that addresses the neutrino mass, dark matter, and generation of the electroweak scale in a single framework. Electroweak symmetry breaking is realized via the Coleman-Weinberg mechanism in a classically scale invariant theory, while the neutrino mass is generated radiatively through interactions with dark matter in a typically scotogenic manner. The model introduces a scalar triplet and singlet and a vectorlike fermion doublet that carry an odd parity of Z_2, and an even parity scalar singlet that helps preserve classical scale invariance. We sample over the parameter space by taking into account various experimental constraints from the dark matter relic density and direct detection, direct scalar searches, neutrino mass, and charged lepton flavor violating decays. We then examine by detailed simulations possible signatures at the LHC to find some benchmark points of the free parameters. We find that the future high-luminosity LHC will have a significant potential in detecting new physics signals in the dilepton channel.  相似文献   

5.
We discuss a one loop model for neutrino masses which leads to a seesaw-like formula with the difference that the charged lepton masses replace the unknown Dirac mass matrix present in the usual seesaw case. This is a considerable reduction of parameters in the neutrino sector and predicts a strong hierarchical pattern in the right handed neutrino mass matrix that is easily derived from a U(1)H family symmetry. The model is based on the left–right gauge group with an additional Z4 discrete symmetry which gives vanishing neutrino Dirac masses and finite Majorana masses arising at the one loop level. Furthermore, it is one of the few models that naturally allow for large (but not necessarily maximal) mixing angles in the lepton sector. A generalization of the model to the quark sector requires three iso-spin singlet vector-like down type quarks, as in E6. The model predicts an inert doublet type scalar dark matter.  相似文献   

6.
In this review phenomenological consequences of the Standard Model extension by means of new spin-1 chiral fields with the internal quantum numbers of the electroweak Higgs doublets are summarized. The prospects for resonance production and detection of the chiral vector Z* and W*± bosons at the LHC energies are considered on the basis of quantitative simulations within the CompHEP/CalcHEP package. The Z* boson can be observed as a Breit-Wigner resonance peak in the invariant dilepton mass distributions in the same way as the well-known extra gauge Z?? bosons. However, the Z* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow one to distinguish them from other heavy neutral resonances. In 2010, with 40 pb?1 of the LHC proton-proton data at the energy 7 TeV, the ATLAS detector was used to search for narrow resonances in the invariant mass spectrum of e + e ? and ??+??? final states and high-mass charged states decaying to a charged lepton and a neutrino. No statistically significant excess above the Standard Model expectation was observed. The exclusion mass limits of 1.15 and 1.35 TeV/c 2 were obtained for the chiral neutral Z* and charged W* bosons, respectively. These are the first direct limits on the W* and Z* boson production. Based on the above, a novel strategy for the chiral boson search in the LHC dijet data is discussed. For almost all currently considered exotic models the relevant signal is expected in the central dijet rapidity region y 1,2 ? 0 and |y 1 ? y 2| ? 0. On the contrary, the chiral bosons do not contribute to this region but produce an excess of dijet events far away from it. In particular, for these bosons the appropriate kinematical restrictions lead to a dip in the centrality ratio distribution over the dijet invariant mass instead of a bump expected in the most exotic models.  相似文献   

7.
We propose a new model for naturally realizing light Dirac neutrinos and explaining the baryon asymmetry of the universe through neutrinogenesis. To achieve these, we present a minimal construction which extends the Standard Model with a real singlet scalar, a heavy singlet Dirac fermion and a heavy doublet scalar besides three right-handed neutrinos, respecting lepton number conservation and a Z2Z2 symmetry. The neutrinos acquire small Dirac masses due to the suppression of weak scale over a heavy mass scale. As a key feature of our construction, once the heavy Dirac fermion and doublet scalar go out of equilibrium, their decays induce the CP asymmetry from the interference of tree-level processes with the radiative vertex corrections (rather than the self-energy corrections). Although there is no lepton number violation, an equal and opposite amount of CP asymmetry is generated in the left-handed and the right-handed neutrinos. The left-handed lepton asymmetry would then be converted to the baryon asymmetry in the presence of the sphalerons, while the right-handed lepton asymmetry remains unaffected.  相似文献   

8.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

9.
The complete one-loop supersymmetric (SUSY) correction to the magnetic moment (NMM) of a Dirac neutrino is calculated with allowance for mixing between the scalar leptons and for mixing between theW-gaugino and Higgs fermions. The contribution from the charged Higgs loop is negligible for all practical purpose. We thoroughly study the dependence of NMM on the SUSY parameters. The SUSY contribution to the NMM can be a few times less than or comparable to the value of the standard model (with a right-handed neutrino singlet added). The SUSY correction to the NMM increases with decreasing β value (tan β=〈H 2〉/〈H 1〉), and is not very sensitive to the charged scalar lepton mass.  相似文献   

10.
11.
We analyze the coupling of CP-even and CP-odd Higgs bosons to a photon and a Z boson in extensions, of the Standard Model. In particular, we study in detail the effect of charged Higgs bosons in two-Higgs doublet models;. and the contribution of SUSY particle loops in the minimal supersymmetric extension of the Standard Model: The Higgs-γZ coupling can be measured in the decayZ → γ+Higgs ate + e ? colliders running on theZ resonance, or in the reverse process Higgs →Zγ with the Higgs boson produced at LHC. We show that a measurement of this coupling with a precision at the percent level, which could be the case at futuree + e ? colliders, would allow to distinguish between the lightest SUSY and standard Higgs bosons in large areas of the parameter space.  相似文献   

12.
The presence of right-handed currents and left-right mixing contributes to the neutrino radiative decay amplitude a term that is directly proportional to the charged lepton mass. This has led to the suggestion that observable decays of relic neutrinos might occur in the left-right model or the mirror model. Explicit calculations in these models are carried out including a careful analysis of the origin of neutrino mass, here assumed to be a Dirac mass. It is found that the amplitude is proportional to the neutrino mass and thus too small to be of interest. A brief comment on the neutrino magnetic moment in anSU(2) L ×U(1) Y model, which contains an iso-singlet charged scalar η+, is also presented.  相似文献   

13.
We explore the signals of a charged Higgs arising in a two Higgs doublet model respecting SUL(2)×U(1)×Z2SU(2)L×U(1)×Z2 symmetry with three singlet right-handed neutrinos, NRNR. The charged Higgs in this model has negligible coupling with quarks, and has unsuppressed coupling to leptons and neutrinos. This leads to novel signatures of the charged Higgs at the LHC, especially in the case of an inverted neutrino mass hierarchy, in the form of electrons and muons with missing energy.  相似文献   

14.
Neutrino mixing in Standard Model extensions, both renormalizable and effective, with arbitrary numbers of singlet and left-handed doublet neutrinos is investigated in a systematic fashion. The charged and neutral (Z-boson-and Higgs-boson-mediated) lepton currents are written under a general Majorana condition, and the independence of observables from the choice of condition, rephasing invariance, is studied. A parametrization of the neutrino mixing matrices in the doublet-singlet factorized form is developed. Its relationship with the see saw mechanism is shown in the limit of small doublet-singlet mixing. The structure of the mixing matrices relevant to neutrino-oscillation experiments is explicated.  相似文献   

15.
《Physics letters. [Part B]》1988,201(4):517-524
We present a modified version of the left-right symmetric model that includes a charged singlet scalar boson where the neutrino is massless at the tree level and acquires a smal and finite Dirac mass at the one-loop level. In the case if three families of fermions, it predicts mve=0 and the other two neutrinos are massive with vτ lighter than vv. The model also predicts large magnetic moments and vμve+ψ decay rates. The new feature of the model is the inclusion of singlet charged heavy fermions which mix with the light quarks and leptons, leading to the existence of tree-level flavor-changing neutral currents, which can provide tests of the model.  相似文献   

16.
We explore the singlet scalar dark matter (DM) from direct detections and high energy neutrino signals generated by the solar DM annihilation. Two singlet scalar DM models are discussed, one is the real singlet scalar DM model as the simple extension of the standard model (SSDM-SM) with a discrete Z2Z2 symmetry, and another is the complex singlet scalar DM model as the simple extension of the left–right symmetric two Higgs bidoublet model (SSDM-2HBDM) with P and CP   symmetries. To derive the Sun capture rate, we consider the uncertainties in the hadronic matrix elements and calculate the spin-independent DM-nucleon elastic scattering cross section. We find that the predicted neutrino induced upgoing muon fluxes in the region 3.7 GeV?mD?4.2 GeV3.7 GeV?mD?4.2 GeV slightly exceed the Super-Kamiokande limit in the SSDM-SM. However, this exceeded region can be excluded by the current DM direct detection experiments. For the SSDM-2HBDM, one may adjust the Yukawa couplings to avoid the direct detection limits and enhance the predicted muon fluxes. For the allowed parameter space of the SSDM-SM and SSDM-2HBDM, the produced muon fluxes in the Super-Kamiokande and muon event rates in the IceCube are less than the experiment upper bound and atmosphere background, respectively.  相似文献   

17.
We propose a unified explanation for the origin of dark matter and baryon number asymmetry on the basis of a non-supersymmetric model for the neutrino masses. Neutrino masses are generated in two distinct ways, that is, a tree-level seesaw mechanism with a single right-handed neutrino, and one-loop radiative effects by a new additional doublet scalar. A spontaneously broken U(1) brings about a Z2 symmetry which restricts couplings of this new scalar and controls the neutrino masses. It also guarantees the stability of a CDM candidate. We examine two possible candidates for the CDM. We also show that the decay of a heavy right-handed neutrino related to the seesaw mechanism can generate baryon number asymmetry through leptogenesis.  相似文献   

18.
We analyse and compute, within a number of standard model (SM) extensions, the cross sections σ AVV for the production of a heavy neutral pseudoscalar Higgs-boson/spin-zero resonance at the LHC and its subsequent decays into electroweak gauge bosons. For comparison we calculate also the corresponding cross sections for a heavy scalar. The SM extensions we consider include a type-II two-Higgs doublet model (2HDM), a 2HDM with four chiral fermion generations, the minimal supersymmetric extension of the SM (MSSM), and top-colour assisted technicolour models. Presently available phenomenological constraints on the parameters of these models are taken into account. We find that, with the exception of the MSSM, these models permit the LHC cross sections σ AVV to be of observable size. That is, a pseudoscalar resonance may be observable, if it exists, at the LHC in its decays into electroweak gauge bosons, in particular in WW and γ γ final states.  相似文献   

19.
We extend the colored Zee–Babu model with a gauged U(1)B-L symmetry, and a scalar singlet dark matter(DM) candidate S. The spontaneous breaking of U(1)B-L leaves a residual Z_2 symmetry that stabilizes the DM, and generates a tiny neutrino mass at the two-loop level with the color seesaw mechanism. After investigating the DM and flavor phenomenology of this model systematically, we further focus on its imprint on two cosmic-ray anomalies: The Fermi-LAT gamma-ray excess at the Galactic Center(GCE), and the Pe V ultra-high energy(UHE)neutrino events at the IceCube. We found that the Fermi-LAT GCE spectrum can be well-fitted by DM annihilation into a pair of on-shell singlet Higgs mediators while being compatible with the constraints from the relic density,direct detections, and dwarf spheroidal galaxies, in the Milky Way. Although the UHE neutrino events at the IceCube could be accounted for by the resonance production of a Te V-scale leptoquark, the relevant Yukawa couplings have been severely limited by the current low-energy flavor experiments. We subsequently derive the IceCube limits on the Yukawa couplings by employing its latest six-year data.  相似文献   

20.
Many extensions of the Standard Model includeSU(2) L ×U(1) Y singlet higgs bosons,h 0, and also vector-like fermions which couple to it. The production and detection possibilities of such singlet neutral scalars at hadron colliders are considered for different scenarios of vectorlike fermions. We find that for some values of masses and couplings, detection at the CERN large hadron collider (LHC) appears to be a distinct possibility, while at the Fermilab Tevatron upgrade theh 0 might be observed only in very favourable circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号