首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Thermal expansion properties of hydrogenated graphene are investigated by performing the first-principles calculations. We find that both fully hydrogenated graphene (graphane) and half hydrogenated graphene (graphone) exhibit negative thermal expansion properties at low temperatures. Their thermal expansion behaviors display the hydrogenation-dependent features: hydrogenated graphene with boat-like structures possess better negative thermal expansion properties than those with chair-like structures. In particular, the graphane with boat-like structure shows giant negative thermal expansion, with thermal expansion coefficient of about ?4.1 × 10-5 K-1. Such different thermal behaviors are ascribed to different vibrational features, and the typical modes contributing to the negative thermal properties of the systems are addressed. Our results will be of importance for both fundamental understanding and the application of this family in nanodevices in the future.  相似文献   

2.
In the present contribution we apply first principles calculations to investigate the electronic structures and stability of BN hydrogenated monolayers which include a substitutional carbon atom. For comparison, additional C hydrogenated structures are considered. The obtained results demonstrate that BN chair-like monolayers are more stable than boat-like configurations. It is found that the most stable structures present bond angles quite similar to the characteristic one observed for s p 3 hybridization. Moreover, a net magnetic moment arises from the introduction of a substitutional carbon impurity. In addition, the results indicate that carbon substitutionals can induce a remarkable reduction of the work function.  相似文献   

3.
Weak satellite structure in the Si Auger electron spectrum at 107 eV has been attributed to a plasmon-energy-gain mechanism by several authors. Detailed measurements of this transition both for Si and for SiC have been made which demonstrate that the plasmon-gain interpretation is incorrect. The satellite transition is observed at 15 ± 1 eV above the main L2,3VV transition in both materials while the plasmon energy increases from 17 eV in Si to 22 eV in SiC. Experimental evidence is presented, in favor of multiple ionization of the initial state as the correct interpretation.  相似文献   

4.
Electronic structure of the Ba/3C–SiC(111) interface has been detailed studied in situ in an ultrahigh vacuum using synchrotron radiation photoemission spectroscopy with photon energies in the range of 100–450 eV. The 3C–SiC(111) samples were grown by a new method of epitaxy of low-defect unstressed nanoscaled silicon carbide films on silicon substrates. Valence band photoemission and both the Si 2p, C 1s core level spectra have been investigated as a function of Ba submonolayer coverage. Under Ba adsorption two induced surface bands are found at binding energies of 2 eV and 6 eV. It is obtained that Ba/3C–SiC(111) interface can be characterized as metallic-like. Modification of both the Si 2p and C 1s surface-related components were ascertained and shown to be provided by redistribution effect of electron density between Ba adatoms and both the Si surface and C interface atoms.  相似文献   

5.
A systematic study of type 1 armchair double-walled SiC nanotubes (DWNTs) (n,n)@(m,m) (3≤n≤6;7≤m≤12) using the finite cluster approximation is presented. The geometries of the tubes have been spin optimized using the hybrid functional B3LYP (Becke’s three-parameter exchange functional and the Lee-Yang-Parr correlation functional) and the all-electron 3-21G* basis set. The study indicates that the stabilities of the double-walled SiC nanotubes are of the same order as those of single-walled SiC nanotubes suggesting the possibilities of experimental synthesis of both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes. The formation energy of the DWNTs is found to be maximum when the interlayer separation is about 3.5 Å. The DWNTs (n,n)@(n+4,n+4) are found to have large formation energies. In particular, (5,5)@(9,9) DWNT is the most stable tube in our study with a binding energy per atom of 5.07 eV, the largest formation energy of 12.39 eV, an interlayer separation of 3.58 Å and a “band gap” of 1.97 eV. All double-walled SiC nanotubes are found to be semiconductors, with the band gaps decreasing from single-walled nanotubes to double-walled nanotubes.  相似文献   

6.
The electronic and optical properties of α-graphyne sheet are investigated by using densityfunctional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. Theoptical properties of the α-graphyne sheet such as dielectric function,refraction index, electron energy loss function, reflectivity, absorption coefficient andextinction index are calculated for both parallel and perpendicular electric fieldpolarizations. The optical spectra are strongly anisotropic along these two polarizations.For (Ex), absorption edge is at 0 eV, while there is noabsorption below 8 eV for (Ez).  相似文献   

7.
This paper presents the structure and electronic properties of graphene grown on 6H-SiC(0001) and SiC(0001?) surfaces via Ni-silicidation reactions at temperatures around 800 °C. Silicidation reactions take place at temperature higher than 400 °C for Ni(10 ML)/SiC and a single-phase θ-Ni2Si(0001)-layer grows epitaxially on SiC(0001?) at 500 °C, whereas a mixed phase silicide-layer is formed on the SiC(0001) substrate. Annealing at 800 °C leads to growth of ordered graphite layers on both SiC(0001?) and SiC(0001) surfaces with an areal occupation ratio of ~ 65%, which surround the Ni-silicide islands. High-resolution ion scattering analysis reveals that single- and double-layer of graphite grow on the SiC(0001?) and SiC(0001), respectively. The dispersion curve of the π band for the double-layer graphite (DG) on the Si-face lies about 1 eV above that of the single-layer graphite (SG) on the C-face around the Γ-point. The work functions of the SG/SiC(0001?) and DG/SiC(0001) are derived to be 5.15 ± 0.05 and 4.25 ± 0.05 eV, respectively, which coincide well with the theoretical prediction based on the ab initio calculations. The present results indicate that the electronic states of graphene are influenced by the interaction with supports.  相似文献   

8.
The electronic structure of segmented nanotubes composed of the alternating layers of (5,5) and (9,0) BN and SiC nanotubes in armchair and zigzag configurations, which differed in the orientation of the chemical bonds in the segments and the nature of the bonds (Si-N and B-C or Si-B and N-C) at the boundaries of BN and SiC regions, has been calculated using the linearized augmented cylindrical wave method. The calculations have been performed using the local density functional and the muffin-tin approximation for the electronic potential. It has been found that depending on the bonds at the segment boundaries, the (5,5) BN/SiC nanotubes are semiconductors with the energy gap E g of 1 to 3 eV, whereas the (9,0) BN/SiC nanotubes exhibited a metal, semimetal, or semiconductor (E g ~ 1 eV) type of band structures.  相似文献   

9.
Classic molecular dynamics (MD) calculations were performed to investigate the deposition of thin hydrocarbon film. SiC (1 0 0) surfaces were bombarded with energetic CH3 molecules at impact energies ranging from 50 to 150 eV. The simulated results show that the deposition yield of H atoms decreases with increasing incident energy, which is in good agreement with experiments. During the initial stages, with breaking Si-C bonds in SiC by CH3 impacting, H atoms preferentially reacts with resulting Si to form Si-H bond. The C/H ratio in the grown films increases with increasing incident energy. In the grown films, CH species are dominant. For 50 eV, H-Csp3 bond is dominant. With increasing energy to 200 eV, the atomic density of H-Csp2 bond increases.  相似文献   

10.
The electronic and optical properties of different stacked multilayer SiC and GeC are investigated with and without external electric field (EEF). The band gaps of multilayer SiC and GeC are found smaller than that of monolayer SiC and GeC due to the interlayer coupling effect. When EEF is applied, the direct band gaps (ΔKM) of multilayer SiC and direct band gaps (ΔKK) of multilayer GeC all turn to indirect band gaps (ΔKG) as the band at the G point drops dramatically toward zero. The imaginary part ε2(ω)s of multilayer SiC and GeC show that new absorption peaks between 2–5 eV appear when the polarized direction is perpendicular to the layer plane, and new absorption peaks in infrared region appear as the EEF is higher than a certain point when the polarized direction is parallel to the layer plane. Our calculations reveal that different stacking sequences and EEF can provide a wide tunable band structures and optical properties for multilayer SiC and GeC.  相似文献   

11.
The most important interband transitions and the local charge neutrality level (CNL) in silicon carbide polytypes 3C-SiC and nH-SiC (n = 2?C8) are calculated using the GW approximation for the self energy of quasiparticles. The calculated values of band gap E g for various polytypes fall in the range 2.38 eV (3C-SiC)-3.33 eV (2H-SiC) and are very close to the experimental data (2.42?C3.33 eV). The quasiparticle corrections to E g determined by DFT-LDA calculations (about 1.1 eV) are almost independent of the crystal structure of a polytype. The positions of CNL in various polytypes are found to be almost the same, and the change in CNL correlates weakly with the change in E g, which increases with the hexagonality of SiC. The calculated value of CNL varies from 1.74 eV in polytype 3C-SiC to 1.81 eV in 4H-SiC.  相似文献   

12.
A systematic study of fullerene hemisphere capped finite SiC nanotubes is presented. The tubes are spin optimized using the hybrid functional B3LYP (Becke?s three-parameter exchange and the Lee-Yang-Parr correlation functionals) and an all electron 3-21G? basis. Capping of a SiC nanotube changes cohesive energy, HOMO-LUMO gap and other electronic and geometric properties of a SiC nanotube. Also, the carbon-capped SiC nanotubes are energetically preferable compared to silicon-capped tubes. For example, the binding energy per atom for hydrogen-terminated “infinite” SiC nanotube (5,5) having five unit cells is 4.993 eV, the corresponding numbers being 5.989 eV and 4.812 eV for C-capped and Si-capped nanotubes, respectively.  相似文献   

13.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

14.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

15.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

16.
The proposed scheme for the consideration of charge transfer in the three-layer Gr/Me/SiC system (where Gr is a single-sheet graphene, Me is an intercalated metal layer, and SiC is a substrate) contains three stages. At the first stage, a metal monolayer adsorbed on silicon carbide is considered and the charge of adatoms in this monolayer is calculated. At the second stage, the shift of the Dirac point of free-standing single-layer graphene in an electrostatic field induced by charged adatoms of the monolayer is estimated. At the third stage, a weak interaction between Me/SiC and free-standing graphene is included, which allows electrons to tunnel but does not significantly distort the density of states of free-standing graphene. Estimations are performed for n- and p-type 6H-SiC(0001) substrates and Cu, Ag, and Au layers. The charge state of the graphene sheet and the shift of the Dirac point with respect to the Fermi level of the system are calculated. A comparison with the available experimental and theoretical results shows that the proposed scheme works quite satisfactorily.  相似文献   

17.
Using density functional theory (DFT) with both the generalized gradient approximation (GGA) and hybrid functionals, we have investigated the structural, electronic and magnetic properties of a two-dimensional hydrogenated silicon-based material. The compounds, i.e. silicene, full- and half-hydrogenated silicene, are studied and their properties are compared. Our results suggest that silicene is a gapless semimetal. The coverage and arrangement of the absorbed hydrogen atoms on silicene influence significantly the characteristics of the resulting band structures, such as the direct/indirect band gaps or metallic/semiconducting features. Moreover, it is interesting to see that half-hydrogenated silicene with chair-like structure is shown to be a ferromagnetic semiconductor.  相似文献   

18.
Silicon carbide (SiC) films are prepared by single- and dual-ion beam sputtering deposition at room temperature, respectively. An assisting argon ion beam (ion energy Ei=150 eV) bombards directly the substrate surface to modify the SiC film surface. The thin films are characterized by the Fourier transform infrared spectroscopy (FTIR) and the Raman spectra. With assisting ion beam bombardment, the density of the Si–C bond in the film increases. Meanwhile, the excess carbon or the size of the sp2 bonded clusters and the amorphous Si (a-Si) phase decrease. These results indicate that the composition of the films is mainly Si–C bond. UV-vis transmission shows that the Eopt increases steadily from 1.85 eV for the amorphous SiC (a-SiC) films without bombardment to about 2.29 eV for those with assisting ion beam bombardment.  相似文献   

19.
利用高分辨电子动量谱仪测量了乙醇分子外价轨道的电离能谱,通过对一系列角度关联的电离能谱进行解谱,获得了各个电离能峰对应的分子轨道电子动量分布.利用密度泛函理论方法计算了乙醇分子两种构象异构体的轨道电子动量分布,通过与实验结果进行比较,发现实验测量的电离能为14.5和15.2 eV能峰对应的电子动量分布分别与理论计算的单个构象异构体trans 8a''和gauche 9a轨道电子动量分布符合较好.  相似文献   

20.
High purity semi-insulating 4H SiC single crystals have potential applications for room temperature radiation detectors because of the wide band gap and radiation hardness. To control carrier lifetime, a key parameter for high performance radiation detectors, it is important to understand the nature of the deep traps in this material. For this purpose, we have successfully applied thermally stimulated current (TSC) and high temperature resistivity measurements to investigate deep level centers in semi-insulating 4H SiC samples grown by physical vapor transport. High temperature resistivity measurements showed that the resistivity at elevated temperatures is controlled by the deep level with an activation energy of 1.56 eV. The dominant traps revealed by TSC measurements were at 1.1-1.2 eV. The deep trap levels in 4H-SiC samples, the impurity and point defect nature of TSC traps peaked at ∼106 K (0.23 eV), ∼126 K (0.32 eV), ∼370 K (0.95 eV), ∼456 K (1.1-1.2 eV) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号