首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the inelastic transport properties of a quantum dot connected to two leads, based on the combination of a recently developed nonperturbative technique and slave-boson methods involving the approximate mapping of the many-body electron–phonon coupling problem onto a multichannel scattering problem in the Kondo regime. The nonequilibrium Green's function method is adopted in calculations for the inelastic transport processes of electrons in the limit of large Coulomb interaction U→∞U under nonequilibrium conditions. The electron–phonon interactions, which are the main source of the inelasticity, are taken into account. For a single quantum dot, we find that the differential conductance and the shot noise exhibit new structures of peaks and dips which are absent in the case without electron–phonon interactions.  相似文献   

2.
We consider the operator , where U is a convex real function defined in a convex open set ORN and lim|x|→U(x)=limxOU(x)=+. We prove that the associated Markov semigroup is ultrabounded with respect to the Gibbs measure .  相似文献   

3.
The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.  相似文献   

4.
We study the evaporation of stars from globular clusters using the simplified Chandrasekhar model [S. Chandrasekhar, Dynamical friction. II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction, Astrophys. J. 97 (1943) 263]. This is an analytically tractable model giving reasonable agreement with more sophisticated models that require complicated numerical integrations. In the Chandrasekhar model: (i) the stellar system is assumed to be infinite and homogeneous (ii) the evolution of the velocity distribution of stars f(v,t) is governed by a Fokker-Planck equation, the so-called Kramers-Chandrasekhar equation (iii) the velocities |v| that are above a threshold value R>0 (escape velocity) are not counted in the statistical distribution of the system. In fact, high velocity stars leave the system, due to free evaporation or to the attraction of a neighboring galaxy (tidal effects). Accordingly, the total mass and energy of the system decrease in time. If the star dynamics is described by the Kramers-Chandrasekhar equation, the mass decreases to zero exponentially rapidly. Our goal is to obtain non-perturbative analytical results that complement the seminal studies of Chandrasekhar, Michie and King valid for large times t→+ and large escape velocities R→+. In particular, we obtain an exact semi-explicit solution of the Kramers-Chandrasekhar equation with the absorbing boundary condition f(R,t)=0. We use it to obtain an explicit expression of the mass loss at any time t when R→+. We also derive an exact integral equation giving the exponential evaporation rate λ(R), and the corresponding eigenfunction fλ(v), when t→+ for any sufficiently large value of the escape velocity R. For R→+, we obtain an explicit expression of the evaporation rate that refines the Chandrasekhar results. More generally, our results can have applications in other contexts where the Kramers equation applies, like the classical diffusion of particles over a barrier of potential (Kramers problem).  相似文献   

5.
We study electron transport through a quantum dot, connected to non-magnetic leads, in a magnetic field. A super-Poissonian electron noise due to the effects of both interacting localized states and dynamic channel blockade is found when the Coulomb blockade is partially lifted. This is sharp contrast to the sub-Poissonian shot noise found in the previous studies for a large bias voltage, where the Coulomb blockade is completely lifted. Moreover, we show that the super-Poissonian shot noise can be suppressed by applying an electron spin resonance (ESR) driving field. For a sufficiently strong ESR driving field strength, the super-Poissonian shot noise will change to be sub-Poissonian.  相似文献   

6.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   

7.
The Faddeev-Volkov model is an Ising-type lattice model with positive Boltzmann weights where the spin variables take continuous values on the real line. It serves as a lattice analog of the sinh-Gordon and Liouville models and intimately connected with the modular double of the quantum group Uq(sl2). The free energy of the model is exactly calculated in the thermodynamic limit. In the quasi-classical limit c→+∞ the model describes quantum fluctuations of discrete conformal transformations connected with the Thurston's discrete analogue of the Riemann mappings theorem. In the strongly-coupled limit c→1 the model turns into a discrete version of the D=2 Zamolodchikov's “fishing-net” model.  相似文献   

8.
9.
We present some analytic results concerning the ground state of the one-dimensional Falicov-Kimball model in the strong coupling limit. Using the perturbation theory, we find: (i) The well-expected phase segregation takes place for ¦U¦ (U is the interaction strength), (ii) For finiteU there exists the critical value of the interaction strengthU =U c, below which the segregated phase — an incoherent mixture of the empty and full lattices cannot be the ground state of the model. We give the analytical expression for this boundary. Finally, we discuss the phase diagram of the model for some special configuration of ions.  相似文献   

10.
We study sequential tunneling through a metallic nanoparticle close to the Stoner instability coupled to parallel magnetized electrodes. Increasing the bias voltage successively opens transport channels associated with excitations of the nanoparticle's total spin. For the current this leads just to a steplike increase. The Fano factor, in contrast, shows oscillations between large super-Poissonian and sub-Poissonian values as a function of bias voltage. We explain the enhanced Fano factor in terms of generalized random-telegraph noise and propose the shot noise as a convenient tool to probe the mesoscopic Stoner instability.  相似文献   

11.
The shot noise of a hybrid triple-quantum-dot (TQD) interferometer has been investigated by employing the nonequilibrium Green's function method, and the general shot noise formula has been derived. The oscillation behaviors of transmission coefficients and shot noise versus the Aharonov–Bohm phase ?   exhibit asymmetric Fano resonance structure and blockade effect. Sub-Poissonian and super-Poissonian behaviors of shot noise appear in different regimes of terminal bias eVγeVγ contributed by the Andreev reflection, and correlation of Andreev tunneling with the normal electron transport. The inverse resonance and resonance structures emerge in the shot noise and Fano factor with respect to one of the gate voltages in different regimes of eVγeVγ. The asymmetric structure can be enhanced by modifying the energy levels and gate biases of the TQD. The self-correlation and cross-correlation of current components contribute to the enhancement and suppression of shot noise.  相似文献   

12.
We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels.  相似文献   

13.
We consider m spinless Bosons distributed over l degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l→∞ or as m→∞. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l→∞ the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m→∞ with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization.  相似文献   

14.
We study the dynamical generation of entanglement for a very simple system: a pair of interacting spins, s1 and s2, in a constant magnetic field. Two different situations are considered: (a) s1 → ∞, s2 = 1/2 and (b) s1 = s2 → ∞, corresponding, respectively, to a quantum degree of freedom coupled to a semiclassical one (a qubit in contact with an environment) and a fully semiclassical system, which in this case displays chaotic behavior. Relations between quantum entanglement and classical dynamics are investigated.  相似文献   

15.
For the two-parameter second-order Hénon map, the shapes and locations of the periodic windows-continua of parameter values for which solutions x0,x1,… can be stably periodic, embedded in larger regions where chaotic solutions or solutions of other periods prevail-are found by a random searching procedure and displayed graphically. Many windows have a typical shape, consisting of a central “body” from which four narrow “antennae” extend. Such windows, to be called compound windows, are often arranged in bands, to be called window streets, that are made up largely of small detected but poorly resolved compound windows.For each fundamental subwindow-the portion of a window where a fundamental period prevails-a stability measure U is introduced; where the solution is stable, |U|<1. Curves of constant U are found by numerical integration. Along one line in parameter space the Hénon-map reduces to the one-parameter first-order logistic map, and two antennae from each compound window intersect this line. The curves where U=1 and U=−1 that bound either antenna are close together within these intersections, but, as either curve with U=−1 leaves the line, it diverges from the curve where U=1, crosses the other curve where U=−1, and nears the other curve where U=1, forming another antenna. The region bounded by the numerically determined curves coincides with the subwindow as found by random searching. A fourth-degree equation for an idealized curve of constant U is established.Points in parameter space producing periodic solutions where x0=xm=0, for given values of m, are found to lie on Cantor sets of curves that closely fit the window streets. Points producing solutions where x0=xm=0 and satisfying a third condition, approximating the condition that xn be bounded as n→−, lie on curves, to be called street curves of order m, that approximate individual members of the Cantor set and individual window streets. Compound windows of period m+m tend to occur near the intersections of street curves of orders m and m.Some exceptions to what appear to be fairly general results are noted. The exceptions render it difficult to establish general theorems.  相似文献   

16.
The isomerization of 1-naphthylacetylene diluted in argon was studied behind reflected shock waves in a 2 in i.d. single pulse shock tube over the temperature range 1000-1250 K and overall densities of ∼3 × 10−5 mol/cm3. The only reaction product found in the post shock mixtures was acenaphthylene. The first order rate constant of the isomerization was found to be k = 2.08 × 1012 exp(−54.2 × 103/RT) s−1, where R is expressed in units of cal/K mol. Potential energy surfaces of the cyclization reaction 1-naphthylacetylene → acenaphthylene and the isomerization 1-naphthylacetylene → 2-naphthylacetylene were calculated using the Becke three-parameter hybrid method with Lee-Yang-Parr correlation functional approximation (B3LYP). Structure, energy and frequency calculations were carried out with the Dunning correlation consistent polarized double ζ (cc-pVDZ) basis set. The rate constant (k) for the 1-naphthylacetylene → acenaphthylene cyclization was calculated using transition state theory, the value obtained is k = 3.52 × 1012 exp(−55.9 × 103/RT) s−1, where R is expressed in units of cal/K mol. The agreement between the experiment and the calculations is very good. RRKM calculations were done to transfer k to the pressure of the single pulse shock tube experiments. In view of high temperature and the large molecule involved the deviation from k is very small. The isomerization 1-naphthylacetylene → 2-naphthylacetylene proceeds via the formation of an unstable intermediate 1,2-naphthalenocyclobutene and has a high barrier of ∼83.5 kcal/mol. In view of this high barrier, the isomerization cannot compete with the cyclization that proceeds with a barrier of ∼56 kcal/mol.  相似文献   

17.
We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor (L) and the spin relaxation length (l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.  相似文献   

18.
We have investigated the spectral density of shot noise for an ultra-small quantum dot(QD) system in the Coulomb blockade regime when irradiated with microwave fields (MWFs) by employing a nonequilibrium Green’s function technique. The shot noise is sensitive to Coulomb interaction, and the photon-assisted Coulomb blockade behaviour strongly modifies the mesoscopic transport. We have calculated the first and second derivatives of shot noise in the strong and weak coupling regimes to compare the theoretical results with existing experimental results. In the strong coupling regime, the first and second derivatives of shot noise display Fano type peak-valley structures around the charging channel 2E c due to Coulomb interaction. When the magnitudes of the MWFs are sufficiently large, the system displays channel blockade due to photon irradiation. The photon-assisted and Coulomb blockade steps in the noise — as well as the resonant behaviour in the differential noise — are smeared by increasing temperature. The Coulomb interaction suppresses the shot noise, but the ac fields can either suppress the shot noise(balanced case) or enhance the shot noise(unbalanced case). The suppression of shot noise caused by ac fields in the balanced case is greater than that caused by Coulomb interaction in our system. Super-Poissonian shot noise may be induced due to the compound effects of strong Coulomb interaction and photon absorption-emission processes.  相似文献   

19.
For non-critical string theory the partition function reduces to an integral over moduli space after integrating over matter fields. The moduli integrand is known analytically for genus one surfaces. The formalism of dynamical triangulations provides us with a regularization of non-critical string theory and we show that even for very small triangulations it reproduces very well the continuum integrand when the central charge c   of the matter fields is large negative, thus providing a striking example of how the quantum fluctuations of geometry disappear when c→−∞c.  相似文献   

20.
We calculate zeros of the q-state Potts model partition function on m  ?th-iterate Sierpinski graphs, SmSm, in the variable q and in a temperature-like variable, y  . We infer some conjectured asymptotic properties of the loci of zeros in the limit m→∞m and relate these to thermodynamic properties of the q  -state Potts ferromagnet and antiferromagnet on the Sierpinski gasket fractal, SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号