共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, the resonant nonlinear Schrödinger's equation is studied with three forms of nonlinearity. This equation is also considered with time-dependent coefficients. The first integral method is used to carry out the integration. Exact soliton solutions of this equation are found. These solutions are constructed through the established first integrals. The power of this manageable method is confirmed. 相似文献
3.
This paper obtains solitons and singular periodic solutions to the generalized resonant dispersive nonlinear Schrödinger’ equation with power law nonlinearity. There are several integration tools that are adopted to extract these solutions. They are simplest equation method, functional variable method, sine–cosine function method, tanh function method and the G′/G-expansion method. These integration techniques reveal bright and singular solitons as well as the corresponding singular periodic solutions to the nonlinear evolution equation. These solitons solutions are important in the nonlinear fiber optics community as well as in the study of rogue waves. 相似文献
4.
In this work, we generalize previous results about the Fractionary Schrödinger Equation within the formalism of the theory of Tempered Ultradistributions. Several examples of the use of this theory are given. In particular we evaluate the Green function for a free particle in the general case, for an arbitrary order of the derivative index. 相似文献
5.
Propagating modes in a class of ‘nonic’ derivative nonlinear Schrödinger equations incorporating ninth order nonlinearity are investigated by application of two key invariants of motion. A nonlinear equation for the squared wave amplitude is derived thereby which allows the exact representation of periodic patterns as well as localized bright and dark pulses in terms of elliptic and their classical hyperbolic limits. These modes represent a balance among cubic, quintic and nonic nonlinearities. 相似文献
6.
Ganshan Yang 《Physics letters. A》2012,376(4):231-235
We provide an explicit blow up solution of Schrödinger equation derived from Schrödinger map. Consequently we show the non-equivalence between the Schrödinger equation and Landau-Lifshitz equation. We also find that two class of equivariant solutions of Landau-Lifshitz equation are static. 相似文献
7.
In this Letter, the generalized nonlinear Schrödinger (GNLS) equation is investigated by Darboux matrix method. A generalized Darboux transformation (DT) of the GNLS equation is constructed with the help of the gauge transformation for an Ablowitz–Kaup–Newell–Segur (AKNS) type GNLS spectral problem, from which a unified formula of Nth-order rogue wave solution to the GNLS equation is given. In particular, the first and second-order rogue wave solutions to the GNLS equation are explicitly illustrated through some figures. 相似文献
8.
9.
A.A. Deriglazov 《Physics letters. A》2009,373(43):3920-3923
We analyze the properties that manifest Hamiltonian nature of the Schrödinger equation and show that it can be considered as originating from singular Lagrangian action (with two second class constraints presented in the Hamiltonian formulation). It is used to show that any solution of the Schrödinger equation with time independent potential can be presented in the form , where the real field ?(t,xi) is some solution of nonsingular Lagrangian theory being specified below. Preservation of probability turns out to be the energy conservation law for the field ?. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics. 相似文献
10.
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped nonlinear Schrödinger (NLS) equation into the standard NLS with constant coefficients. The transformation is valid as long as |Γt|?1, with Γ the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave solutions of the equation are presented and discussed. The results shed some lights on the effects of wind and dissipation on the formation of rogue waves. 相似文献
11.
We analyze the extension of the well known relation between Brownian motion and the Schrödinger equation to the family of the Lévy processes. We consider a Lévy-Schrödinger equation where the usual kinetic energy operator-the Laplacian-is generalized by means of a selfadjoint, pseudodifferential operator whose symbol is the logarithmic characteristic of an infinitely divisible law. The Lévy-Khintchin formula shows then how to write down this operator in an integro-differential form. When the underlying Lévy process is stable we recover as a particular case the fractional Schrödinger equation. A few examples are finally given and we find that there are physically relevant models-such as a form of the relativistic Schrödinger equation-that are in the domain of the non stable Lévy-Schrödinger equations. 相似文献
12.
We show that a point particle moving in space-time on entwined-pair paths generates Schrödinger’s equation in a static potential in the appropriate continuum limit. This provides a new realist context for the Schrödinger equation within the domain of classical stochastic processes. It also suggests that ‘self-quantizing’ systems may provide considerable insight into conventional quantum mechanics. 相似文献
13.
14.
We study a possible solitary wave solution of the nonlinear Schrödinger equation (NLSE). It is shown that the wave can be both modulated and nonmodulated depending on a ratio of the envelope and the carrier wave velocities. We also study the same type of the soliton solution in DNA dynamics. We show that the ratio of these two velocities is a measure of modulation and we conclude that the modulated wave is more stable than the nonmodulated one. Finally, we solved the problem concerning three parameters arising from the applied procedure for the solution of the NLSE. 相似文献
15.
Hosung Sun 《Physics letters. A》2009,374(2):116-122
The relativistic one-dimensional Klein-Gordon equation can be exactly solved for a certain class of potentials. But the nonrelativistic Schrödinger equation is not necessarily solvable for the same potentials. It may be possible to obtain approximate solutions for the inexact nonrelativistic potential from the relativistic exact solutions by systematically removing relativistic portion. We search for the possibility with the harmonic oscillator potential and the Coulomb potential, both of which can be exactly solvable nonrelativistically and relativistically. Though a rigorous algebraic approach is not deduced yet, it is found that the relativistic exact solutions can be a good starting point for obtaining the nonrelativistic solutions. 相似文献
16.
《中国科学:物理学 力学 天文学(英文版)》2010,(11)
Considering the fact that some excited states of the heavy quarkonia (charmonium and bottomonium) are still missing in experimental observations and potential applications of the relevant wave functions of the bound states,we re-analyze the spectrum and the relevant wave functions of the heavy quarkonia within the framework of Bethe-Salpeter (B.S.) equation with a proper QCDinspired kernel.Such a kernel for the heavy quarkonia,relating to potential of the non-relativistic quark model,is instantaneous,so we call the corresponding B.S.equation as BS-In equation throughout the paper.Particularly,a new way to solve the B.S.equation,which is different from the traditional ones,is proposed here,and with it not only the known spectrum for the heavy quarkonia is re-generated,but also an important issue is brought in,i.e.,the obtained solutions of the equation ‘automatically’ include the ‘fine’,‘hyperfine’ splittings and the wave function mixture,such as S-D wave mixing in J PC = 1-states,P-F wave mixing in J PC = 2 ++ states for charmonium,bottomonium etc.It is pointed out that the best place to test the wave mixture probably is at Z-factory (e + e-collider running at Z-boson pole with extremely high luminosity). 相似文献
17.
With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences “separated” in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q=1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles. 相似文献
18.
Jonatan Lenells 《Physica D: Nonlinear Phenomena》2008,237(23):3008-3019
We analyze the derivative nonlinear Schrödinger equation on the half-line using the Fokas method. Assuming that the solution q(x,t) exists, we show that it can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter ζ. The jump matrix has explicit x,t dependence and is given in terms of the spectral functions a(ζ), b(ζ) (obtained from the initial data q0(x)=q(x,0)) as well as A(ζ), B(ζ) (obtained from the boundary values g0(t)=q(0,t) and g1(t)=qx(0,t)). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation. Given initial and boundary values {q0(x),g0(t),g1(t)} such that there exist spectral functions satisfying the global relation, we show that the function q(x,t) defined by the above Riemann-Hilbert problem exists globally and solves the derivative nonlinear Schrödinger equation with the prescribed initial and boundary values. 相似文献
19.