共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we study a model of synchronization process on scale free networks with degree-degree correlations. This model was already studied on this kind of networks without correlations by Pastore y Piontti et al. [A.L. Pastore y Piontti, P.A. Macri, L.A. Braunstein, Phys. Rev. E 76 (2007) 046117]. Here, we study the effects of the degree-degree correlation on the behavior of the load fluctuations Ws in the steady state. We found that for assortative networks there exist a specific correlation where the system is optimally synchronized. In addition, we found that close to this optimal value the fluctuations does not depend on the system size and therefore the system becomes fully scalable. This result could be very important for some technological applications. On the other hand, far from the optimal correlation, Ws scales logarithmically with the system size. 相似文献
2.
In this work, we study the effects of embedding a system of non-linear phase oscillators in a two-dimensional scale-free lattice. In order to analyze the effects of the embedding, we consider two different topologies. On the one hand, we consider a scale-free complex network where no constraint on the length of the links is taken into account. On the other hand, we use a method recently introduced for embedding scale-free networks in regular Euclidean lattices. In this case, the embedding is driven by a natural constraint of minimization of the total length of the links in the system. We analyze and compare the synchronization properties of a system of non-linear Kuramoto phase oscillators, when interactions between the oscillators take place in these networks. First, we analyze the behavior of the Kuramoto order parameter and show that the onset of synchronization is lower for non-constrained lattices. Then, we consider the behavior of the mean frequency of the oscillators as a function of the natural frequency for the two different networks and also for different values of the scale-free exponent. We show that, in contrast to non-embedded lattices that present a mean-field-like behavior characterized by the presence of a single cluster of synchronized oscillators, in embedded lattices the presence of a diversity of synchronized clusters at different mean frequencies can be observed. Finally, by considering the behavior of the mean frequency as a function of the degree, we study the role of hubs in the synchronization properties of the system. 相似文献
3.
Recently, the researches on pinning control of complex dynamical networks have mainly focused on such networks with very specific coupling schemes (e.g., symmetric coupling, uniform coupling and linear coupling). However, most real networks often consist of local units, which interact with each other via asymmetric and heterogeneous connections. In this paper, pinning control of a continuous-time complex dynamical network with general coupling topologies is studied. Some generic stability criteria based on master stability function (MSF) are derived for such a general controlled network, which guarantee that the whole network can be pinned to its equilibrium by placing feedback control only on a small fraction of nodes. Then, these results are extended to discrete-time case. Previous results about symmetric, uniform or linear coupled networks in this area are included as special cases of the present work. Numerical simulations of directed networks with weighted coupling pinned by specifically selective pinning scheme are given for illustration and verification. 相似文献
4.
Synchronization criteria for complex dynamical networks with neutral-type coupling delay 总被引:1,自引:0,他引:1
A generalized complex dynamical networks model with neutral-type coupling delay is proposed, which is an extension for the systems without time delay and with the retarded delay. By some transformation, the synchronization problem of the complex networks is transferred equally into the asymptotical stability problem of a group of uncorrelated neutral delay functional differential equations. Furthermore, the less conservative sufficient conditions for both delay-independent and delay-dependent asymptotical synchronization stability criteria are derived in the form of linear matrix inequalities based on the free weighting matrix strategy. Numerical examples are given to illustrate the theoretical results. 相似文献
5.
In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples. 相似文献
6.
In this Letter, we study the synchronization for delayed complex networks by adjusting time-varying coupling strengths. Under some assumptions, the update laws of the coupling strengths are obtained to realize the synchronization based on Lassalle-Yoshizawa theorem. For the given delayed complex network, we can always find appropriate coupling strengths to achieve the synchronization. Compared with the existing results, the update laws don't need the information of the characteristics of the identical node and the coupling matrix. The state-dependencies of coupling strengths coupled to the dynamics of the nodes in a way to enhance synchronization. An example shows the proposed theoretical result is feasible and effective. 相似文献
7.
A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures.The synchronization of multi-spatiotemporal chaotic systems is implemented by adding the control only to a terminal node,and the controller is designed via a corresponding update law.The control law is applied to spatiotemporal Gray-Scott systems.Numerical results demonstrate the effectiveness and the feasibility of the proposed approach. 相似文献
8.
A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures. The synchronization of multi-spatiotemporal chaotic systems is implemented by adding the control only to a terminal node, and the controller is designed via a corresponding update law. The control law is applied to spatiotemporal Gray-Scott systems. Numerical results demonstrate the effectiveness and the feasibility of the proposed approach. 相似文献
9.
This paper is devoted to the study of the average-consensus problem in directed networks of agents with both switching topology and time-delay. The stability analysis is performed based on a proposed Lyapunov-Krasovskii function. Sufficient conditions in terms of linear matrix inequalities (LMIs) are given to guarantee the average consensus under arbitrary switching of the network topology even if the time-delay is time-varying. Numerical simulations show the effectiveness of our theoretical results. 相似文献
10.
Complex networks are wide spread in the real world, arising in fields as disparate as sociology, physics and biology. The information spreading through a complex network is often associated with time delays due to the finite speeds of signal transmission over a distance. Hence, complex networks with coupling delays have gained increasing attention in various fields of science and engineering today. In this paper, based on the theory of asymptotic stability of linear time-delay systems, synchronization stability in complex dynamical networks with coupling delays is investigated, and we derive novel criteria of synchronization state for both delay-independent and delay-dependent stabilities. As illustrative examples, we use the networks with coupling delays and a given coupling scheme to test the theoretical results. 相似文献
11.
This work studies the synchronization of a number of mobile agents on a substrate network. Each agent carries a chaotic map and randomly walks on a connected network. The collection of agents consists of another time-varying network derived from the substrate network. It is found that the synchronization conditions of this agent network depend on the average degree of the substrate network’s connectivity, the coupling strength between interacting agents, and the agent density in the network. Synchronization of the agent network on scale-free and ER networks is considered here, and it is found that the scale-free topology is more applicable to synchronize mobile chaotic agents. To get analytical insights, the star graph is taken and considered as a substrate network. 相似文献
12.
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. 相似文献
13.
Synchronization in different types of weighted networks based on a scale-free weighted network model is investigated. It has been argued that heterogeneity suppresses synchronization in unweighted networks [T. Nishikawa, A.E. Motter, Y.C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91 (2003) 014101]. However, it is shown in this work that as the network becomes more heterogeneous, the synchronizability of Type I symmetrically weighted networks, and Type I and Type II asymmetrically weighted networks is enhanced, while the synchronizability of Type II symmetrically weighted networks is weakened. 相似文献
14.
The consensus problem in directed networks with arbitrary finite time-varying communication delays under both fixed topology and switching topologies is investigated in this article. The dynamics of each missile in this leader-followers system is with linear form. Feedback linearization is used here to attain linear guidance law for each missile, which is the base law for cooperative. Based on graph theory, the consensus problem can be converted to the stability of corresponding error system. Then Lyapunov function method is used to analyze the stability of the error system. Consensus of networks with time-delays under switching topologies is proved using common Lyapunov function method. Simulations indicate the excellent performances of the algorithms in terms of accuracy and efficiency. 相似文献
15.
It has been demonstrated that most complex networks display synchronization phenomena, and this problem has attracted great attention of various fields including science and engineering. In this paper, a generalized complex dynamical network model with time-varying delays was presented. Kronecker product was adopted to investigate this model. Moreover, several synchronization criteria were derived for both delay-independent and delay-dependent asymptotical stability. Especially, it has been shown that synchronization of such dynamical network is determined by the linear matrix inequality consisting of coupling configuration matrices, inner-coupling matrices and isolated cells. At last, illustrative examples were given to validate the above-acquired. 相似文献
16.
R. E. Amritkar 《Pramana》2008,71(2):195-201
We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator
for each node of the network and interactions connecting different nodes via the links of the network. We consider existence
and stability conditions for both single- and multi-cluster synchronization. For networks with time-varying topology we compare
the synchronization properties of these networks with the corresponding time-average network. We find that if the different
coupling matrices corresponding to the time-varying networks commute with each other then the stability of the synchronized
state for both the time-varying and the time-average topologies are approximately the same. On the other hand, for non-commuting
coupling matrices the stability of the synchronized state for the time-varying topology is in general better than the time-average
topology.
相似文献
17.
Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay 总被引:4,自引:0,他引:4
Xiaoqun Wu 《Physica A》2008,387(4):997-1008
Many existing papers investigated the geometric features, control and synchronization of complex dynamical networks provided with certain topology. However, the exact topology of a network is sometimes unknown or uncertain. Based on LaSalle’s invariance principle, we propose an adaptive feedback technique to identify the exact topology of a weighted general complex dynamical network model with time-varying coupling delay. By receiving the network nodes evolution, the topology of such a kind of network with identical or different nodes, or even with varying topology can be monitored. In comparison with previous methods, time delay is taken into account in this simple, analytical and systematic synchronization-based technique. Particularly, the weight configuration matrix is not necessarily symmetric or irreducible, and the inner-coupling matrix need not be symmetric. Illustrative simulations are provided to verify the correctness and effectiveness of the proposed scheme. 相似文献
18.
In this paper, the networks with optimal synchronizability are obtained using the local structure information. In scale-free networks, a node will be coupled by its neighbors with maximal degree among the neighbors if and only if the maximal degree is larger than its own degree. If the obtained coupled networks are connected, they are synchronization optimal networks. The connection probability of coupled networks is greatly affected by the average degree which usually increases with the average degree. This method could be further generalized by taking into account the degree of next-nearest neighbors, which will sharply increase the connection probability. Compared to the other proposed methods that obtain synchronization optimal networks, our method uses only local structure information and can hold the structure properties of the original scale-free networks to some extent. Our method may present a useful way to manipulate the synchronizability of real-world scale-free networks. 相似文献
19.
《Physics of life reviews》2014,11(4):598-618
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). 相似文献
20.
The present paper is mainly concerned with the issues of synchronization dynamics of complex delayed dynamical networks with impulsive effects. A general model of complex delayed dynamical networks with impulsive effects is formulated, which can well describe practical architectures of more realistic complex networks related to impulsive effects. Based on impulsive stability theory on delayed dynamical systems, some simple but less conservative criterion are derived for global synchronization of such dynamical network. It is shown that synchronization of the networks is heavily dependent on impulsive effects of connecting configuration in the networks. Furthermore, the theoretical results are applied to a typical SF network composing of impulsive coupled chaotic delayed Hopfield neural network nodes, and are also illustrated by numerical simulations. 相似文献