首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.  相似文献   

2.
The electronic band structure and magnetic properties of iron phthalocyanine (FePc) monolayer were investigated by using the first-principles all-electron full-potential linearized augmented plane wave energy band method. It is found that the ferromagnetic FePc monolayer is energetically more stable than the paramagnetic one. The exchange interaction, which splits the majority and minority bands, influences strongly on the electronic structure near the Fermi level (EF). Magnetic moment of the central Fe atom is calculated to 1.95 μB. The range of the positive polarization of Fe site is larger in the out-of-plane than in the in-plane direction. The FePc ligand remains paramagnetic. The presence of states at EF indicates the metallic character of FePc monolayer both for the paramagnetic and ferromagnetic states. However, the large density of states at EF of the majority spins in the ferromagnetic state is expected to cause a phase transition to insulating antiferromagnetic state from the metallic ferromagnetic one.  相似文献   

3.
基于密度泛函的第一性原理方法,研究了Li、Na、K和Rb碱金属原子吸附在双层石墨烯(BLG)表面的吸附能、迁移行为、电子性能.研究发现,Li和Na原子在BLG表面吸附易形成团簇,K和Rb原子能够分散吸附.碱金属原子在BLG表面的扩散能垒随原子半径的增加而减小.碱金属原子吸附使电子部分转移至BLG,使体系Fermi能级贯穿导带,表现出金属性.电荷密度差和电荷转移的分析表明,Li、Na、K和Rb与BLG表面以离子键结合.  相似文献   

4.
We have performed first-principles calculations to investigate the structural, lattice dynamics and thermodynamic properties of the zincblende thallium-V compounds: TlAs, TlP and TlN. The ground-state parameters, such as the lattice constant and the bulk modulus, as well as the electronic structure are calculated using the plane wave pseudopotential approach to density functional theory within the local density approximation. Phonon dispersion spectra are derived from the linear response to density functional theory. The present ab initio results for phonon dispersion are compared and contrasted with the common III–V materials. Thermodynamical properties, calculated using quasiharmonic approximations, are also reported.  相似文献   

5.
基于密度泛函的第一性原理方法,研究了Li、Na、K和Rb碱金属原子吸附在双层石墨烯(BLG)表面的吸附能、迁移行为、电子性能. 研究发现,Li和Na原子在BLG表面吸附易形成团簇,K和Rb原子能够分散吸附. 碱金属原子在BLG表面的扩散能垒随原子半径的增加而减小. 碱金属原子吸附使电子部分转移至BLG,使体系Fermi能级贯穿导带,表现出金属性. 电荷密度差和电荷转移的分析表明,Li、Na、K和Rb与BLG表面以离子键结合.  相似文献   

6.
By performing first-principles calculations, the intriguing electronic and magnetic properties of the semidecorated sheets of group-IV and III-V binary compounds are investigated. Our results indicate that the semifluorinated and semihydrogenated ab (ab = SiC, GeC, SnC, BN, AlN, and GaN) sheets exhibit diverse electronic and magnetic properties. Accordingly, the electronic and magnetic properties of the semidecorated sheets can be precisely modulated by controlling the adsorbed atoms on the a sites. Further, the preference of ferromagnetic or antiferromagnetic coupling can be attributed to the combined effects of both through-bond spin polarization and p-p direct interaction for the semidecorated ab sheets.  相似文献   

7.
We perform first-principles calculations to investigate the band structure, density of states, optical absorption, and the imaginary part of dielectric function of Cu, Ag, and Au-doped anatase TiO2 in 72 atoms systems. The electronic structure results show that the Cu incorporation can lead to the enhancement of d states near the uppermost of valence band, while the Ag and Au doping cause some new electronic states in band gap of TiO2. Meanwhile, it is found that the visible optical absorptions of Cu, Ag, and Au-doped TiO2, are observed by analyzing the results of optical properties, which locate in the region of 400-1000 nm. The absorption band edges of Cu, Ag, and Au-doped TiO2 shift to the long wavelength region compared with the pure TiO2. Furthermore, according to the calculated results, we propose the optical transition mechanisms of Cu, Ag, and Au-doped TiO2. Our results show that the visible light response of TiO2 can be modulated by substitutional doping of Cu, Ag, and Au.  相似文献   

8.
Within the framework of the local density approximation (LDA) of the density functional theory (DFT) and the pseudopotential method, we have carried out ab initio calculations to investigate the structural and electronic properties of graphene upon the adsorption of benzene and naphthalene molecules. Our total-energy calculations suggest that, for both benzene and naphthalene adsorbed on graphene, the stack configuration is the most stable structure. The corresponding adsorption energies at different sites are estimated for both molecular adsorbates. The equilibrium parameters and the electronic band structure for the stable geometries have been calculated and compared with the available findings.  相似文献   

9.
基于密度泛函理论,系统研究了由两个La@Si_(16)组装而成的高度稳定的管状二聚体La_2@Si_(32)团簇.电子结构分析显示,内嵌La原子诱导的类sp~2杂化对于提高管状Si_(32)的稳定性至关重要.Mülliken布局分析显示,La_2@Si_(32)的总磁矩为2 μ_B,主要来源于两个La原子和第三、第六层的八个Si原子;电荷是由Si原子转移到了La原子上.此外,通过连接一系列La_2@Si_(32)单体而获得了一类组装的硅纳米线La@SiNW,研究结果显示La@SiNW具有金属导电特性,其总磁矩为2 μ_B.上述特征暗示具有磁性的La_2@Si_(32)和La@SiNW可能在自旋电子器件和高密度磁记录材料方面具有潜在的应用前景.  相似文献   

10.
The structural, elastic, electronic and optical properties of the monoclinic BiScO3 are investigated in the framework of the density functional theory. The calculated structural parameters are in agreement with the experimental values. Moreover, the structural stability of BiScO3 system has been confirmed by the calculated elastic constants. The band structure, density of states, charge transfers and bond populations are also given. The results indicate that BiScO3 has a direct band gap of 3.36 eV between the occupied O 2p states and unoccupied Bi 6p states, and its bonding behavior is a combination of covalent and ionic nature. Finally, the absorption spectrum, refractive index, extinction coefficient, reflectivity, energy-loss function and dielectric function of the monoclinic BiScO3 are calculated. In addition, the variation of the static dielectric constants ε1(0) as a function of pressure for BiScO3 is also discussed.  相似文献   

11.
从第一性原理出发,利用密度泛函理论体系下的广义梯度近似,研究了Ba0.5Ca0.5ZrO3的电子结构和光学性质.计算得到该晶体的晶格常数为4.1823 A,且此材料是一种间隙的半导体材料,价带和导带都来源于Ba原子、Ca原子、Zr原子的d态和O原子的p态电子间的杂化.吸收系数为105 cm-1量级,且吸收主要集中在低能区.静态折射率为1.79,能量损失峰出现在10.8 eV处.该研究结果为Ba0.5Ca0.5ZrO3光电材料的设计和应用提供了理论依据.  相似文献   

12.
本文模拟计算了2,2’,4,4’,6,6’-六硝基联苯(HNBP)、2,2’,4,4’,6,6’-六硝基二苯乙烯(HNS)、2,5-二苦基-1,3,4-噁二唑(DPO)和5,5''-双(2,4,6-三硝基苯基)-2,2''-双(1,3,4-噁二唑)(TKX-55)四种耐热含能化合物的分子结构、Mulliken电荷布居、分子静电势(MEP)和Hirshfeld表面, 通过研究其分子特性、电子特性以及分子间相互作用, 以了解高耐热性含能化合物的耐热机理. 结果表明, 桥连接结构的复杂性以及分子间强氢键相互作用会增强含能化合物的稳定性. 此外, 本研究还发现中间基团的加入会对四种含能化合物分子两侧芳香环上碳原子的电荷分布以及分子表面正负静电势区域面积产生一定的影响.  相似文献   

13.
利用密度泛函理论系统研究了AuBe_5型新相NdMgNi_(4-x)Co_x(x=0,1,2,3)的晶体学结构、弹性力学性能、热力学性质和电子结构特性.与试验数据相比,晶格常数的相对误差在0.34%之内,而晶体学参数的相对误差在0.24%之内.通过广义胡可定律、Voigt-Reuss-Hill方法和平均声速计算了弹性常数、弹性模量和德拜温度,利用Gibbs2代码计算了0~1000 K范围内的吉布斯自由能、熵和等体热容.计算的结果与其他文献计算结果符合的很好.结果表明:合金相的热稳定性随着Co含量的增加而增强.NdMgNi_(4-x)Co_x(x=0,1,2,3)合金均为韧性材料且按以下顺序增强:NdMgNi_4NdMgNi_2Co_2NdMgNi_3Co NdMgNiCo_3.随着温度升高,合金相的熵S增大而Cv值均趋近于杜隆-珀蒂极限值.对电子态密度的计算表明,NdMgNi_(4-x)Co_x(x=1,2,3)合金为磁性材料,且磁性随着Co含量的增大而增强.  相似文献   

14.
The different crystal structures of ferromagnetic Ni2MnGa have been calculated using density functional theory (DFT) with special emphasis on the modulated structures 10M and 14M. These are important for understanding the stability of Ni2MnGa martensites and their functionality as shape-memory materials. The modulated structures have been optimized in the calculations and their properties are discussed in relation to the structures without modulation. The occurrence of the modulated structures is related to the soft TA2 phonon mode observed in Ni2MnGa. The latter is related to the specific nesting behaviour of the Fermi surface in Ni2MnGa. Particular shapes of the modulated structures are stabilized by the covalent interaction mediated by the p-orbitals of Ga and d-orbitals of Ni. The role of this interaction becomes clear when considering the phonon dispersion spectrum of Ni2MnGa, where characteristic anomalies occur in the coupling of acoustical vibrational modes and the optical modes of Ni.  相似文献   

15.
《Physics letters. A》2019,383(28):125864
The electronic structure and thermoelectric properties of monolayer Bi2Te2Se were studied by density functional theory and semi-classical Boltzmann transport equation. The band gap with TB-mBJ can be improved for monolayer Bi2Te2Se. Monolayer Bi2Te2Se have ultra-low thermal conductivity comparing with other well-known two-dimensional materials. The monolayer Bi2Te2Se can improve electrical conductivities. ZT increases with increasing temperature for monolayer Bi2Te2Se. Comparing to GGA, TB-mBJ has larger ZT value in p-type doping. Monolayer Bi2Te2Se have larger ZT comparing with other well-known two-dimensional materials. Our calculated results show that our calculation greatly underestimates ZT value, therefore, monolayer Bi2Te2Se should have a higher ZT value.  相似文献   

16.
17.
利用基于密度泛函理论的第一性原理方法计算TiCrTaV多组元合金中两种BCC结构的结构稳定性、力学性能、德拜温度、电子结构和布居分析. 生成焓和内聚能结果表明BCC1的结构稳定性更好,更容易形成. 弹性常数和模量表明BCC1的强度和韧性更强,BCC2的抗剪切能力和刚度更好,两种结构均具有弹性各向异性. 德拜温度和Grüneisen参数结果表明BCC2的键合强度和热稳定性更好. 电子结构和布居分析表明两种结构均包含共价键和金属键. Ta原子形成的共价键强度更大,金属键仅存在于Ti、Cr和V原子之间. 元素成键后Ti和V原子失去电子,Cr和Ta原子得到电子.  相似文献   

18.
Full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT) has been utilized to calculate structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds with the dopant concentration x in the range 0≤x≤1. For the contribution of exchange-correlation potential, we used Wu-Cohen generalized gradient approximation (GGA) to calculate structural parameters, whereas both Wu-Cohen and Engel-Vosko GGA have been applied to calculate electronic structure of the materials. Only a slight deviation from Vegard's law has been observed for the calculated lattice constants and bulk moduli of the alloys. Structural and chemical factors that affect the band-gap bowing of these semiconductor alloys have been estimated and discussed. Density of states curves and charge density maps have been calculated and analyzed. Lastly, optical properties of both binary and their related ternary alloys have been discussed in terms of the calculated dielectric function. The resultant optical parameters are compared with the available experimental data and other calculations.  相似文献   

19.
采用第一性原理计算研究了金红石TiO2结构在高压下的不稳定性及热力学性质. 计算的高压下结构参数和零压的声子色散曲线与实验数据十分吻合. 进一步模拟了在不同压力下的声子曲线,在压力下,声子曲线不断软化,?点附近的振动频率不断减小直至虚频,意味着结构的不稳定,根据计算的不同压力下的弹性常数获得了其力学不稳定性,结果表明金红石结构TiO2在压力高于17.7 GPa时变得不稳定. 根据准谐近似,获得了金红石TiO2结构的热力学性质,计算结果与现有  相似文献   

20.
Using first-principles density-functional calculations, we have studied the structural and electronic properties of ultrathin ZnO {0001} nanofilms. The structural parameters, the charge densities, band structures and density of states have been investigated. The results show that there are remarkable charge transfers from Zn to O atoms in the ZnO nanofilms. All the ZnO nanofilms exhibit direct wide band gaps compared with bulk counterpart, and the gap decreases with increased thickness of the nanofilms. The decreased band gap is associated with the weaker ionic bonding within layers and the less localization of electrons in thicker films. A staircase-like density of states occurs at the bottom of conduction band, indicating the two-dimensional quantum effects in ZnO nanofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号