首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C—B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nano...  相似文献   

2.
张华林  孙琳  韩佳凝 《物理学报》2017,66(24):246101-246101
利用基于密度泛函理论的第一性原理方法,研究了三角形BN片掺杂的锯齿型石墨烯纳米带(ZGNR)的磁电子学特性.研究表明:当处于无磁态时,不同位置掺杂的ZGNR都为金属;当处于铁磁态时,随着杂质位置由纳米带的一边移向另一边时,依次可以实现自旋金属-自旋半金属-自旋半导体的变化过程,且只要不在纳米带的边缘掺杂,掺杂的ZGNR就为自旋半金属;当处于反铁磁态时,在中间区域掺杂的ZGNR都为自旋金属,而在两边缘掺杂的ZGNR没有反铁磁态.掺杂ZGNR的结构稳定,在中间区域掺杂时反铁磁态是基态,而在边缘掺杂时铁磁态为基态.研究结果对于发展基于石墨烯的纳米电子器件具有重要意义.  相似文献   

3.
4.
By using the first-principles calculation based on density functional theory, we investigate the electronic structures and transport properties of the defected and doped zigzag graphene nanoribbons (ZGNRs). The effects of multivacancies defects and impurities have been considered. The results show that band structures of ZGNRs can be tuned strongly and currents drop drastically due to the defect and impurities. Moreover, the notable suppression of conductance can be found near the Fermi level, leading to the negative differential resistance (NDR) behavior under low bias. This effect presents a possibility in novel nanoelectronics devices application.  相似文献   

5.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

6.
We investigate the electronic properties of graphene nanoribbons with attachment of bearded bonds as a model of edge modification. The main effect of the addition of the beards is the appearance of additional energy subbands. The originally gapless armchair graphene nanoribbons become semiconducting. On the other hand, the originally semiconducting armchair graphene nanoribbons may or may not change to gapless systems depending on the width. With the inclusion of a transverse electric field, the band structures of bearded graphene nanoribbons are further altered. An electric field creates additional band-edge states, and changes the subband curvatures and spacings. Furthermore, the energy band symmetry about the chemical potential is lifted by the field. With varying width, the bandgap demonstrates a declining zigzag behavior, and touches the zero value regularly. Modifications in the electronic structure are reflected in the density of states. The numbers and energies of the density of state divergent peaks are found to be strongly dependent on the geometry and the electric field strength. The beard also causes electron transfer among different atoms, and alters the probability distributions. In addition, the electron transfers are modified by the electric field. Finally, the field introduces more zero values in the probability distributions, and removes their left–right symmetry.  相似文献   

7.
F. J. Owens 《Molecular physics》2013,111(19):3107-3109
Molecular orbital calculations of the electronic properties of graphene nanoribbons as a function of length in the nanometre range show a pronounced decrease in the band gap and ionization potential with increasing length. It is shown that length can be used to design the materials to be insulating, semiconducting or metallic. A low ionization potential (work function), less than single walled carbon nanotubes, is obtained at the longest length of the calculation (2.3?nm). This latter result suggests the possibility of using graphene nanoribbons as electric field induced electron emitters. Calculations on boron and nitrogen doped carbon nanoribbons indicate that the triplet state is more stable than the singlet state.  相似文献   

8.
Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.  相似文献   

9.
许俊敏  胡小会  孙立涛 《物理学报》2012,61(2):27104-027104
本文采用基于密度泛函理论(DFT)的第一性原理计算了铂原子填充扶手椅型石墨烯纳米带(AGNR)中双空位结构的电学性能.计算结果表明: 通过控制铂原子的掺杂位置, 可以实现纳米带循环经历小带隙半导体—金属—大带隙半导体的相变过程; 纳米带边缘位置是铂原子掺杂的最稳定位置, 边缘掺杂纳米带的带隙值随宽度的变化与本征AGNR一样可用三簇曲线表示, 但在较大宽度时简并成两条曲线, 一定程度上抑制了带隙值的振荡; 并且铂原子边缘掺杂导致宽度系数Na = 3p和3p + 1(p是一个整数)的几个较窄纳米带的带隙中出现杂质能级, 有效地降低了其过大的带隙值. 此外, 铂掺杂AGNR的能带结构对掺杂浓度不是很敏感, 从而降低了对实验精度的挑战. 本文的计算有利于推动石墨烯纳米带在纳米电子学方面的应用.  相似文献   

10.
Electronic and transport properties of boron-doped graphene nanoribbons   总被引:4,自引:0,他引:4  
We report a spin polarized density functional theory study of the electronic and transport properties of graphene nanoribbons doped with boron atoms. We considered hydrogen terminated graphene (nano)ribbons with width up to 3.2 nm. The substitutional boron atoms at the nanoribbon edges (sites of lower energy) suppress the metallic bands near the Fermi level, giving rise to a semiconducting system. These substitutional boron atoms act as scattering centers for the electronic transport along the nanoribbons. We find that the electronic scattering process is spin-anisotropic; namely, the spin-down (up) transmittance channels are weakly (strongly) reduced by the presence of boron atoms. Such anisotropic character can be controlled by the width of the nanoribbon; thus, the spin-up and spin-down transmittance can be tuned along the boron-doped nanoribbons.  相似文献   

11.
田文  袁鹏飞  禹卓良  陶斌凯  侯森耀  叶聪  张振华 《物理学报》2015,64(4):46102-046102
锯齿型和扶手椅型六角形石墨烯分别跨接在两Au电极上, 构成分子纳器件, 同时考虑对六角形石墨烯分别进行B, N和BN局部规则掺杂. 利用第一性原理方法, 系统地研究了这些器件的电子输运特性. 计算结果表明: B及BN掺杂到扶手椅型六角形石墨烯, 对其电流有较好的调控效应, 同时发现本征及掺杂后的锯齿型六角形石墨烯均表现为半导体性质, 且N及BN掺杂时, 表现出明显的负微分电阻现象, 特别是N掺杂的情况, 能呈现显著的负微分电阻效应, 这也许对于发展分子开关有重要应用. 通过其透射特性及掺杂诱发的六角形石墨烯电子结构的变化, 对这些结果的内在原因进行了说明.  相似文献   

12.
The electronic properties of graphene nanoribbons (GNRs) with heteroatom (boron or nitrogen) substitutional doping at different sites are investigated by performing first-principles calculations based on density functional theory. The calculated results show that boron substitutional doping changes the conducting characteristics of GNRs to half-metallic. In contrast, nitrogen substitutional doping results in retention of the half-metallic characteristics of GNRs. It is predicted that the theoretical results may be valuable to the design of GNR-based spintronics devices.  相似文献   

13.
Using nonequilibrium Green?s functions in combination with the density functional theory, the spin-dependent electronic transport properties on V-shaped notched zigzag-edged graphene nanoribbons junctions have been calculated. The results show that the electronic transport properties are strongly depending on the type of notch and the symmetry of ribbon. The spin-filter phenomenon and negative differential resistance behaviors can be observed. A physical analysis of these results is given.  相似文献   

14.
金掺杂锯齿型石墨烯纳米带的电磁学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胡小会  许俊敏  孙立涛 《物理学报》2012,61(4):47106-047106
本文采用基于密度泛函理论的第一性原理计算了金原子填充锯齿型石墨烯纳米带 (ZGNRs)中双空位结构的电磁学特性. 计算结果表明: 边缘位置是金原子的最稳定掺杂位置, 杂质原子的引入导致掺杂边缘的磁性被抑制, 不过掺杂率足够大时, 掺杂边缘的磁性反而恢复了. 金掺杂纳米带的能带结构对掺杂率敏感: 随着掺杂率的增大, 掺杂纳米带分别表现半导体特性、半金属特性以及金属特性. 本文的计算表明金原子掺杂可以调制ZGNR的磁性以及能带特性, 为后续实验起指导作用, 有利于推动石墨烯材料在自旋电子学方面的应用.  相似文献   

15.
We investigate the electronic transport for an impurity-doped armchair-edge graphene nanoribbon (AGNR), with 7 or 8 dimer lines along zigzag direction, sandwiched between two normal leads. By using the standard nonequilibrium Green’s function technique, it is demonstrated that, the impurity influence on the transport properties for system with semiconducting 7-AGNR system is more sensitive than that for one with metallic 8-AGNR system in the vicinity of the impurity energy level. In particular, in the absence of impurity the density of states (DOS) and linear conductance G possess a small zero value interval for 7-AGNR system and a large nonzero plateau for 8-AGNR one, respectively. Interestingly, as impurity included the DOS and G show a single sharp resonant peak around the impurity energy level for 7-AGNR system due to resonant tunneling, while a small dip appears in the same position for 8-AGNR system due to the antiresonance states. Moreover, we have also inspected the behavior of the differential conductance upon varying the impurity concentration for the systems. The findings here may suggest it is more favorable to fabricate an electric switch with high on-off ratio by using an impurity-assisted semiconducting AGNR.  相似文献   

16.
Using the tight-binding model and Green’s function method, we studied the electronic transport of four kinds of nanotube-graphene junctions. The results show the transport properties depend on both types of the carbon nanotube and graphene nanoribbon, metal or semiconducting. Moreover, the defect at the nanotube-graphene interface did not affect the conductance of the whole system at the Fermi level. In the double junction of nanotube/nanoribbon/nanotube, quasibound states are found, which cause antiresonance and result in conductance dips.  相似文献   

17.
We studied theoretically the electronic transport of metallic graphene nanoribbons (GNRs) with two vacancies using the tight-binding model and Green’s function method. The results show that the conductance of zigzag GNR (ZGNR) varies with the relative position of two vacancies. However, when two vacancies reside on the edges, the conductance remain unchanged compared to that of perfect GNRs due to the interaction between vacancy state and edge state. Moreover, the conductance at the Fermi level for armchair GNR (AGNR) can be zero or finite depending on the position of vacancies on the GNRs. The demonstrated features of electronic transport open extremely attractive perspectives for designing well-defined GNR-based nanoelectronic devices.  相似文献   

18.
《Physics letters. A》2014,378(11-12):904-908
Rectification performances of rhombic graphene nanoribbons coupled to gold electrodes through thiolate bonds with left and right vertical carbon atoms substituted by one nitrogen or boron atom are analyzed by performing theoretical calculations using a self-consistent ab initio approach that combines the density functional theory with the non-equilibrium Green's function formalism. Increasing the size of graphene nanoribbon markedly improves the rectification effect because of the asymmetric potential profile distribution in rhombic graphene for polarization near the boron and nitrogen atoms.  相似文献   

19.
邓伟胤  朱瑞  邓文基 《物理学报》2013,62(6):67301-067301
在紧束缚近似下, 提出有限系统的Bloch定理方法, 解析计算了Zigzag型石墨烯纳米带的电子态和能带.研究发现, 其电子态有两类, 分别是驻波态和边缘态; 驻波态的波矢为实数, 波函数是正弦函数形式; 边缘态的波矢主要是虚数, 实数部分为零或者π/2, 波函数是双曲正弦函数形式. Zigzag型石墨烯纳米带的能带由驻波态能量和边缘态能量组成, 我们推导了边缘态的关于无限长方向波矢和能量的精确取值范围. 讨论了边缘态和驻波态的过渡点, 发现两种电子态通过不同的方式在受限波矢趋于零时关于格点位置逼近线性关系. 当受限方向也变成无限长时, 可以得到与无限大石墨烯相同的能带关系. 关键词: 紧束缚模型 Zigzag型石墨烯纳米带 边缘态  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号