首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of runaway electrons during disruptions has been observed in the HT‐7 Tokamak. The runaway current plateaus, which can carry part of the pre‐disruptive current, are observed in lower‐hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. We can use gas puffing to increase the line‐averaged density to restrain the runaway electrons and rebuild the plasmas after the disruptions. Detailed observations are presented on the runaway electrons generated following disruptions in the HT‐7 tokamak discharges. The results indicate that the magnetic oscillations play a significant role in the loss of runaway electrons in disruptions. There are two important preconditions to rebuild plasmas by runaway electrons after the disruptions. One of them are weak magnetic oscillations; another one are LHWs (lower‐hybrid waves) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10{21} argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions.  相似文献   

3.
An experimental study of runaway electrons in the EAST tokamak has been performed by a recently developed multi‐channel hard x‐ray diagnostics based on NaI(TL) scintillator detectors. It is found that in the current quench phase, the inductive loop voltage plays an important role in the generation of runaway electrons. And the avalanche mechanism was the main mechanism for runaway electrons after the disruptions. The distribution and transportation of runaway electrons were also investigated by multi‐channel hard x‐ray diagnostics. It is also found that the intensity of runaway electrons emission in the core plasma was much higher than those in the downside of the cross‐section, while the emission intensity of runaway electrons in the core plasma was almost the same. Calculated shrinking coefficient of runaway electrons emission after the plasma disruption was about 26 m/s according to the experimental data (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Self-consistent modeling of the evolution of the plasma current during disruptions in large tokamaks is presented, taking into account both the generation of runaway electrons and their backreaction on the electric field. It is found that the current profile changes dramatically, so that the postdisruption current carried by runaway electrons is much more peaked than the thermal predisruption current. Although only a fraction of the thermal current is converted into runaway electrons, the central current density increases significantly for typical parameters in JET and ITER. It is also shown that the radial runaway profile can easily become filamented in the radial direction.  相似文献   

5.
在HT-7托卡马克的等离子体密度调制实验中,通过对欧姆和低杂波电流驱动两种放电条件下等离子体逃逸电子辐射行为的研究,验证了非准稳态等离子体中逃逸电子的产生机制,研究了欧姆和低杂波电流驱动两种放电条件下的大量充气对等离子体整体约束性能的影响。研究结果发现:放电过程中额外的大量工作气体的充入使等离子体偏离了准稳态,逃逸电子初级产生机制和次级产生机制准稳态的假设条件被打破,这时候需要利用非准稳态条件下修正后的逃逸电子归一化阈值速度来解释逃逸电子的辐射行为; 同时也发现放电过程中额外的大量工作气体的充入将使等离子体的整体约束性能变差。  相似文献   

6.
The high-energy current of runaway electrons during a major disruption in tokamak reactors can cause serious damage to the first wall of the reactors and reduce their life time. Therefore, finding a method to minimize runaway electron generation during a major disruption is much needed. Tokamak limiter biasing is one of the methods that can be used for controlling the radial electric field and can induce a transition to an improved confinement state. This paper attempts to examine the effect of limiter biasing on the generation of runaway electrons during a major disruption. To do so, a horizontal biased limiter placed on the tokamak was used. Main parameters such as plasma current, loop voltage, emitted hard X-ray intensity, magnetohydrodynamic (MHD) oscillation and Hα radiation and spectrum of hard X-rays, in the presence and absence of negative and positive limiter biasing, were measured. The results show that the application of limiter biasing during a major disruption can reduce runaway electron generation.  相似文献   

7.
 HT-7托卡马克的逃逸电子诊断系统由CdTe,BGO,Na三种探测器组成,可以用来观测逃逸电子撞击托卡马克第一壁材料产生的硬X射线轫致辐射,它的能量响应范围是0.3~1.5 MeV。结合电子回旋辐射、中子等诊断手段,研究了HT-7超导托卡马克在低杂波电流驱动下的逃逸电子行为。实验结果显示:高功率低杂波的关断和低功率低杂波的投入都会增强逃逸电子的产生,但是如果低杂波可以将等离子体环电压降低到逃逸的阈值电场以下,低杂波的投入就可以抑制电子的逃逸。逃逸电子的产生还和低杂波功率有着密切的关系,可以通过控制低杂波的投入和关断的时刻以及改变低杂波功率来抑制逃逸电子的产生。  相似文献   

8.
HT-7 Tokamak拥有离子回旋波(ICRF)和低杂波(LHW)两套加热系统.ICRF主要对加热离子有比较好的加热效果,LHW则主要是通过电子Landau阻尼加热电子.除此之外,在ICRF和LHW协同加热的条件下,可以对等离子体产生更有效的加热效果,增加等离子体的聚变反应截面,增加聚变中子产额.本文报道了LHW对改善ICRF和等离子体耦合的重要作用,ICRF和LHW加热等离子体中电子温度随时间的演化过程,计算了放电过程中电子逃逸的阈值能量,分析了逃逸电子的产生过程,以及放电过程中的中子产额.研究结果发  相似文献   

9.
During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electron cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.  相似文献   

10.
本文采用统计方法分析了HL-2A托卡马克装置上欧姆放电条件下的实验数据,根据硬X射线出现时刻的等离子体环电压、中心线平均等离子体电子密度等参数,计算出电子逃逸的实验阈值,并与初级产生机制下逃逸电子的理论阈值进行对比.实验数据表明逃逸电场阈值明显高于相对论碰撞理论预测,抑制电子逃逸现象的临界电子密度明显比理论预测的低.这与ITPA(International Tokamak Physics Activity)在D3D,TEXTOR,FTU,KSTAR等装置得出的实验结果吻合.针对逃逸现象出现时刻硬X射线增长率的实验研究发现初级产生机制下逃逸电子的增长率与电场强度大小成正比,与中心线平均等离子体电子密度成反比,此现象验证了通过减小环电压或提高等离子体密度的方法可以抑制电子逃逸现象.  相似文献   

11.
This paper reports that an experimental investigation of fast pitch angle scattering(FPAS) of runaway electrons in the EAST tokamak has been performed.From the newly developed infrared detector(HgCdTe) diagnostic system,the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time.The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems(including electron-cyclotron emission,hard x-ray,neutrons).It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons.The Parail and Pogutse instability is a possible mechanism for the FPAS.  相似文献   

12.
 分析了电流爬升阶段等离子体密度和电流爬升率对逃逸电子行为的影响,研究了低杂波辅助电流驱动条件下的逃逸电子辐射行为。结果发现:电流爬升阶段等离子体密度的大小严重影响了电流爬升阶段甚至电流平顶阶段逃逸电子的行为,较低的等离子体密度将会导致放电过程中比较强的逃逸电子辐射;低能逃逸电子辐射随着电流爬升率的增大而增强;低杂波辅助电流爬升可以有效地节约装置的伏秒数;降低放电过程中的环电压,可有效抑制逃逸电子的产生。  相似文献   

13.
本文采用统计方法分析了HL-2A托卡马克装置上欧姆放电条件下的实验数据,根据硬X射线出现时刻的等离子体环电压、 中心线平均等离子体电子密度等参数, 计算出电子逃逸的实验阈值, 并与初级产生机制下逃逸电子的理论阈值进行对比. 实验数据表明逃逸电场阈值明显高于相对论碰撞理论预测, 抑制电子逃逸现象的临界电子密度明显比理论预测的低. 这与ITPA(International Tokamak Physics Activity)在D3D, TEXTOR, FTU, KSTAR等装置得出的实验结果吻合. 针对逃逸现象出现时刻硬X射线增长率的实验研究发现初级产生机制下逃逸电子的增长率与电场强度大小成正比, 与中心线平均等离子体电子密度成反比, 此现象验证了通过减小环电压或提高等离子体密度的方法可以抑制电子逃逸现象.  相似文献   

14.
纳秒脉冲下高能量快电子逃逸过程的计算   总被引:1,自引:0,他引:1       下载免费PDF全文
邵涛  孙广生  严萍  谷琛  张适昌 《物理学报》2006,55(11):5964-5968
基于快电子的逃逸击穿机理将是一种能解释纳秒脉冲高过电压倍数下气体放电现象的理论,对高能量快电子的逃逸运动、碰撞电离引导电子崩的发展等进行了分析,并根据电子能量与阻力关系式,对电子的俘获或逃逸过程进行了计算.结果表明外加场强越高,更多的电子能逃逸,逃逸的能量阈值越低,气压对电子的逃逸过程影响也较大.同时也定性描述了纳秒脉冲下逃逸击穿放电过程. 关键词: 气体放电 快电子 逃逸击穿 纳秒脉冲  相似文献   

15.
Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.  相似文献   

16.
The influence of the voltage pulse rise time on the amplitude of a runaway electron beam and X-ray generation in air and nitrogen under atmospheric pressure is studied experimentally and theoretically. Generalization of the whistle criterion for the case of a nonuniform field is suggested. It is shown that the maximal energy of beam electrons and the beam current amplitude grow when the voltage pulse rise time decreases. It is found that the amplitude of the runaway electron current reaches a maximum at a certain curvature of the cathode. The maximal energy of electrons increases when the radius of curvature of the cathode exceeds the value at which the beam current amplitude is the highest. If the field is nonuniform, its critical value at which many electrons run away is more than an order of magnitude lower than in the uniform field.  相似文献   

17.
用NaI闪烁体探测器组成的逃逸电子诊断系统和CdTe半导体探测阵列组成的快电子轫致辐射诊断系统,研究了一定等离子体密度条件下低杂波功率和等离子体电流对逃逸产生的影响以及一定低杂波功率下等离子体密度对逃逸电子产生的不同作用效果。根据实验数据计算了HT-7装置等离子体中电子逃逸的阈值电场和一定放电条件下电子逃逸的阈值能量。  相似文献   

18.
本文描述我们在实验观察到每次放电结束之前或大破裂之后,强烈的高能X射线出现,同时伴随着较强的光致中子辐射。其时逃逸电子的最大能量,在考虑到回旋辐射损失及逃逸电子速度的径向分量引起的回旋半径变小等情况后经计算可达50-62MeV,光致中子的强度为2.5×10~(10)s~(-1),与JET在破裂条件下的经验定标关系大致相符。  相似文献   

19.
We report on the observation of a large production of runaway electrons during a disruptive termination of discharges heated with lower-hybrid waves at the Frascati Tokamak Upgrade. The runaway current plateaus, which can carry up to 80% of the predisruptive current, are observed more often than in normal Ohmic disruptions. The largest runaway currents correspond to the slowest plasma current decay rates. This trend is opposite to what is observed in most tokamaks. We attribute this anomalous behavior to the acceleration of the preexistent wave-resonant suprathermal electrons during the disruption decay phase. These results could be relevant for the operation of the ITER tokamak whenever a sizeable amount of lower-hybrid power is made available.  相似文献   

20.
Nanosecond space discharge in a gas-filled diode is promising for pumping of lasers and high-power lamps. The space charge formed in the absence of an additional preionization source has a few advantages. The energy distributions of the beam electrons and the X-ray spectrum are determined. It is demonstrated that several high-energy electron bunches are formed in such a discharge. The main contribution to the beam current measured behind the foil is related to the runaway electrons, which have energies of tens or hundreds of kiloelectronvolts (supershort avalanche electron beam (SAEB)). Fast electrons with energies of several or tens of kiloelectronvolts are responsible for the generation of the soft X rays in the discharge gap. Anomalous electrons whose energy is higher than the voltage across the gap provide for a minor (less than 5%) contribution to the beam current. The generation time of these electrons is equal to the SAEB generation time accurate to 0.1 ns. It is demonstrated that the anomalous electrons can be generated owing to the acceleration in the presence of the field in front of the moving background-electron multiplication wave. The spectra of the X-ray radiation generated by the fast electrons in the volume are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号