首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
We have studied the ΔJ = 2 rotationally shifted emission lines in the region of the strong absorption of molecular iodine which occurs within the 5145 Å argon ion laser line. We used an etalon tuned, single frequency argon ion laser with a linewidth of 20 MHz to excite the iodine emission and recorded the spectra of the rotational lines with Fabry-Perot spectrometers having resolutions up to 70 MHz (0.0023 cm-1). To overcome Doppler linewidth limitations we took spectra of the emission at small angles to the exciting beam and found the lines to have widths less than our instrumental resolution and frequencies which accurately tuned with the incident laser frequency. We recorded the emission lines for laser frequencies in the absorption line center and out into the absorption wing. Our spectra show that the intensity of the emission lines follows the absorption line profile while the frequency of the emission lines is determined by the laser frequency; the intensity is maximum at the absorption line center, falling by 104 as the laser frequency is moved off the line center, while the line position maintains a constant frequency shift from the laser frequency.  相似文献   

2.
Radiative emission of fast electrons in collision with an “ion‐sphere” electron distribution in dense plasmas is under consideration. The electron structure of the ion sphere is calculated ab initio using self‐consistent solution of both bound and free electron distribution inside the sphere. Two radiation channels are included: emission of the colliding electron itself in static potential (conventional or static Bremsstrahlung) and the emission of “ion sphere” medium due to its polarization by the colliding electron (polarization Bremsstrahlung). The last one is calculated in the frame of local plasma density approximation. Interference between conventional and polarization Bremsstrahlung is taken into account. It is shown that spectral cross section of the process has characteristic features depending on plasma density and ionization stage of plasma ions. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
《Surface science》1988,197(3):L273-L280
Electron emission yields and energy spectra for impact of Arq+ (1⩽q⩽12) and Taq+ (7⩽q⩽21) ions on clean tungsten and gold are presented. The contribution of Auger emission processes have been investigated as function of ion energy, cleanness of surfaces and ion charge state.  相似文献   

4.
The K X-ray emission spectra of carbon and oxygen in calcite single crystals CaCO3 were measured. Owing to the polarization of the radiation the shape of both spectra shows a pronounced angular dependence, which makes it possible to separate the contributions of the π- and σ-valence electrons of the CO32? ion to the X-ray spectra, and to determine the sequence and the binding energies of the valence orbitals.  相似文献   

5.
6.
Secondary ion clusters with mass greater than 700 amu, e.g., K(KF)12+ and up to 27 atoms, e.g., Na(NaF)13+, have been observed in the static SIMS spectra of MF (M = Li, Na, K), NaBF4, and KPF6. The long series of detected cluster ions of the type M(MF)n+ indicates that there is a high degree of stability associated with these clusters. The observation of such clusters in the NaBF4 and KPF6 spectra suggest that there is significant molecular rearrangement occurring in the secondary ion emission process from such salts. The secondary ion Intensities provide a crude fit to the Saha-Eggert equation, yielding an electron temperature of ~12,000 K. The data are consistent with the plasma model of surface ionization in which rearrangement and cluster formation occur in the plasma.  相似文献   

7.
The manifestation of ion pairs in the absorption and emission of fluorescence by symmetric indotricarbocyanine dyes with the same cation and anions Br, I, and BF4 in ethanol, methylene chloride, and dichlorobenzene has been investigated. It is shown that the formation of ion pairs on passing to low-polarity solvents, along with the changes in the electronic absorption and emission spectra, manifests itself in the polarization and fluorescence excitation spectra. We were the first to establish that the presence of an equilibrium mixture of contact ion pairs and free ions in solutions has an effect on the position and probabilities of transitions not only for the first but also for higher excited singlet states of the molecules of polymethine dyes. The formation of ion pairs manifests itself more clearly when the spectral-luminescence properties of compounds in the shortwave spectral region are analyzed. It has been established that marked changes arise in the absorption, excitation, emission, and polarization fluorescence spectra, as well as in the lifetime and quantum yield of fluorescence in this spectral region when the solvent is changed.  相似文献   

8.
Neutron time-of-flight spectra were measured in coincidence withγ-rays characteristic for thexn (x=2, 3, 4, 5) fusion-like products in reactions of 35–57 MeVα-particles with124Sn. Additional information was obtained from excitation function andγ-multiplicity measurements. The neutron energy spectra for a specificx n channel at high bombarding energies clearly show the presence of nonequilibrium neutron emission. The spectra are parameterized in terms of emission from a slow equilibrated and a fast moving source. The fast moving source has a velocity close to the beam velocity indicating a close relationship between the movement of the projectile and the neutron emission.  相似文献   

9.
The partial wave analysis of two-photon free-free (bremsstrahlung) electron transition cross sections during scattering by a static potential U(r), as well as by an atom with a nonzero angular momentum, is carried out. The dipole interaction with radiation is taken into account in the second order of perturbation theory for the general case of elliptic polarization of photons. The polarization and angular dependences of the two-photon potential scattering amplitude is presented as a combination of the scalar product of electron momenta and photon polarization vectors and five atomic parameters containing Legendre polynomials of the scattering angle as well as radial matrix elements depending on the initial (E) and final (E′) electron energies. The results are applicable both for spontaneous double bremsstrahlung at nonrelativistic energies and for induced absorption and emission in the field of a light wave. Specific polarization effects (circular and elliptic dichroism) are analyzed for two-photon bremsstrahlung processes associated with the interference of the Hermite and anti-Hermite parts of the amplitude and depending on the sign of photon helicity. The limiting cases of high and low photon frequencies are investigated analytically, and the asymptotic forms of radial matrix elements and amplitudes for the general form of the U(r) potential are determined. Closed analytic expressions are derived for the radial matrix elements of the Coulomb potential in the form of integrals of hypergeometric function, and singularities are singled out in explicit form for E′ → E. The methods of approximate calculation of the radial matrix elements are discussed, and the results of their exact numerical calculation, as well as angular distributions and the cross sections of induced one-and two-photon emission and absorption, are given for the case of the Coulomb potential. The numerical results show that dichroism effects are quite accessible for experimental observations.  相似文献   

10.
The semiclassical approach to determine the Fourier components of the electron dipole moment disregarding polarization (noninteracting electron model) is used for analyzing ion oscillator strengths and determining the radiation properties of plasmas consisting of multiply charged ions of heavy elements. The oscillator strength distribution df/d?? (proportional to the photoabsorption cross section) is calculated as a function of the degree of ionization and self-similar frequency ?? = ??/Z. It is found that for low degrees of ionization, function df/d?? for an ion is close to function df/d?? for a neutral atom; upon an increase in the degree of ionization, regions are formed in which df/d?? = 0 (transparency windows) and the photoabsorption cross section for high degrees of ionization differs from zero only in small frequency ranges. The resultant distribution of the ion oscillator strengths is used for calculating the polarizability of ions as a function of frequency and the cross section of radiation scattering on ions. For a gold plasma, the absorbance and opacity (both spectral and averaged according to Rosseland and Planck) are calculated. The results of computing the paths and absorption coefficients coincide in order of magnitude with the available data. The effect of scattering on the Rosseland path is estimated.  相似文献   

11.
The mechanism of thermoluminescence in natural barites has been investigated by comparing the TL glow curve shapes, TL emission spectra and ESR spectra of natural barites and impurity doped synthetic barium sulphate phosphors. The results of TL-ESR correlation studies indicate that the anion radicals formed on irradiation act as hole traps and are responsible for the barites TL glow curve peaks, i.e. the temperatures at which anion radicals are anihilated correspond to the temperatures of the glow peaks of natural barites. The TL mechanism involves the release of holes during the thermal activation which recombine with electrons trapped at the host cation or at lattice defect sites. Energy thus released is non-radiatively transferred to the Pb2+ impurity ion which is identified to be responsible for TL emission of natural barites. On return to the normal state, the Pb2+ ion emits its characteristic emission.  相似文献   

12.
Non-inertial electromagnetic effects in matter, i.e. electromagnetic fields created by a non-inertial motion of material bodies, are discussed within the Drude–Lorentz (plasma) model of matter polarization. It is shown that an oscillatory motion of a point-like body, or wavelike motion in an extended body gives rise to electromagnetic fields with the same frequency as the frequency of the original motion, while shock-like movements of a point-like body generate electromagnetic fields with the characteristic (atomic scale) frequency of the bodies. The polarization of a rigid body induced by rotations is discussed in various circumstances. A uniform rotation produces a static electric field in a dielectric and a stationary current (and a static magnetic field) in a conductor. The latter corresponds to the gyromagnetic effect (while the former may be called the gyroelectric effect). Both fields are computed for a sphere and the gyromagnetic coefficient is derived. A non-uniform rotation induces emission of electromagnetic fields. The equations of motion for the polarization are linearized for slight non-uniformities of the angular velocity and solved both for a dielectric and a conducting sphere. The electromagnetic field emitted by a dielectric spherically shaped body in (a slightly) non-uniform rotation has the characteristic (atomic scale) frequency of the body (slightly shifted by the uniform part of the angular frequency). In the same conditions, a conducting sphere emits an electromagnetic field whose frequency is double the uniform part of the angular frequency.  相似文献   

13.
We study both theoretically and experimentally the photon-in and photon-out spectra of CeO2, which are caused by the Ce 2p to Ce 5d excitation followed by the three different de-excitation channels: (i) Ce 3d to Ce 2p (denoted by 3d-RXES), (ii) O 2p to Ce 2p (v-RXES), and (iii) Ce 5d to Ce 2p (RIXS). In 3d- and v-RXES, the 5d electron plays a role of a spectator, but in RIXS it is a participator. By extending our single impurity Anderson model (SIAM), which was used recently for our calculations of v- and 3d-RXES spectra of CeO2, we study the polarization dependence in the spectator and participator spectra, and we perform more detailed calculations for 3d- and v-RXES spectral features, as well as new calculations for the RIXS spectrum with charge transfer excitations. The polarization dependence is different for the spectator and participator spectra; we have no polarization correlation between the incident and emitted photons for the spectator spectra but a strong polarization correlation for the participator spectrum. The theoretical calculations predict that the charge transfer excitations in RIXS occur in the transfer-energy range overlapped with v-RXES, but the RIXS and v-RXES spectra can be discriminated by taking advantage of the different polarization dependence. The overlapped RIXS and v-RXES spectra are observed successfully by our experiments and well reproduced by our SIAM calculations.  相似文献   

14.
Zn-doped SnO2 nanoparticles were prepared by the chemical co-precipitation route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses of these prepared nanoparticles were carried out for structural and morphological studies. All the samples have been found to have tetragonal rutile structure of the polycrystalline SnO2 having crystallite size in the range 13–25 nm. TEM micrographs show agglomeration of nanoparticles in all the samples. At a particular temperature, the dielectric constant of all the samples has been found to decrease with increasing frequencies which may be due to rapid polarization processes occurring in SnO2 nanoparticles. The ac conductivity, σ (ω), has been found to vary with frequency according to the relation σ (ω) ∝ ωS. The value of S has been found to be temperature dependent, decreasing with increasing frequency which suggests that a hopping process is the most likely conduction mechanism in these nanoparticles. The room temperature photoluminescence (PL) spectra of the undoped and Zn-doped SnO2 nanoparticles consist of the near band-edge ultraviolet (UV) emission and the defect related visible emissions. The origin of emission peaks in the visible region is attributed to oxygen-related defects that are introduced during growth.  相似文献   

15.
Absorption, emission, and excitation spectra of Ag? centers in KCl, RbCl, CsCl, and CsBr are measured at low temperatures. The positions of theA emission bands are slightly different afterC andA band excitation, respectively. This is believed to be due to the existence of two different types of minima in the adiabatic potential energy surface of the3 T 1u state. The symmetry of the energy minima in the1 T 1u state is trigonal for KCl∶Ag? and Cu?, but tetragonal for CsBr∶Ag?. This becomes evident from the polarization properties of the emission. The energy and temperature dependence of the polarization is discussed. Uniaxial stress causes polarized emission of Ag? and Cu? centers measured from LHeT to 100 K. This is due to a splitting and mixing of the relaxed excited states by the stress. The effects are used to calculate the coupling constants between thep electron and theE g andT 2g lattice modes. They are compared with predictions from the point-charge model for different lattice structures. A new assignment of the absorption bands of KCl∶Cu? to the excited states of Cu? is established on measurements of emission spectra and lifetimes.  相似文献   

16.
Y0.99−xPO4:0.01Dy3+, xBi3+ (x=0, 0.01, 0.05, 0.10, 0.15, 0.20 and 0.25) phosphors have been synthesized by a modified chemical co-precipitation method using urea as a pH value regulator. The samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples have only single tetragonal structure when x≤0.15, but extraneous BiPO4 phase appears besides major tetragonal phase when x≥0.20. The crystallinity of the samples is found to improve with increasing Bi3+ ion concentration from 0 to 15 mol%, and then decreased for higher concentrations associated with increasing BiPO4 phase. Photoluminescence excitation spectra results show that the phosphor can be efficiently excited by ultraviolet light from 250 to 400 nm including four peaks at 294, 326, 352 and 365 nm. Emission spectra exhibit strong blue emission (483 nm) and another strong yellow emission (574 nm). When the Bi3+ ion concentration is 1 mol%, the intensity of excitation and emission spectra increased evidently. In addition, the yellow-to-blue emission intensity ratio (IY/IB) is strongly related to the excitation wavelength and not to the Bi3+ ion concentration.  相似文献   

17.
Muon polarization losses in plastic scintillators of two types and in fused quartz have been studied by the μSR method. The muon and muonium spin precession spectra have been measured on the μSR setup placed at the output of the muon channel of the Gatchina synchrocyclotron. It has been shown that a significant fraction of stopped muons participate in the formation of the muonium. As a result, these muons lose their polarization completely. The magnitude of muon depolarization depends considerably on the type of plastic. It has been found that the muon spin precession frequency in fused quartz in an external magnetic field (F Q, μ = 0.116 ± 0.002 MHz) is shifted with respect to that in plastic scintillators (F 1, μ = 0.101 ± 0.005 MHz and F 2, μ = 0.101 ± 0.002 MHz).  相似文献   

18.
19.
The frequency spectrum of tungsten field emission current instability when H2 and CO are adsorbed is measured. The power spectrum density slope W(f) versus f is found to be different for both cases. The slopes are about ?1 and ?1.5 for H2 and CO adsorption, respectively. The dependency of frequency spectra on the crystal planes is also measured. The amplitude of W(f) is found to be largest for (310) and lowest for (112).  相似文献   

20.
Inclusive and coincident spectra of alpha particles and fission fragments were measured for the232Th+12C (85 MeV) reaction to study the influence of the excitation energy and the angular momentum on the fission of the compound nucleus and to separate different alpha particle emission mechanisms. At backward angles α emission can be accounted for by the evaporation processes. At forward angles the most important contribution is given by the break-up fusion process. Mass distributions for compound nuclei244Cm (E*=58 MeV,ff coincidences), and240Pu (E*=37 MeV,ff α coincidences) were obtained. In the case of240Pu mass distribution has a shape different from those obtained in light ion reactions at the same excitation energy, indicating the strong influence of the entrance channel. The dependence of the mass distribution shape on the α particle energy is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号