共查询到20条相似文献,搜索用时 18 毫秒
1.
In the present study, field-amplified sample stacking injection using the electroosmotic flow pump (FAEP) was developed for the capillary electrophoretic separation of the four nerve agent degradation products methylphosphonic acid (MPA), ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA) and cyclohexyl methylphosphonic acid (CMPA). Coupled to contactless conductivity detection, direct quantification of these non-UV active compounds could be achieved. Sensitivity enhancement of up to 500 to 750-fold could be obtained. The newly established approach was applied to the determination of the analytes in river water and aqueous extracts of soil. Detection limits of 0.5, 0.7, 1.4 and 2.7 ng/mL were obtained for MPA, EMPA, IMPA and CMPA, respectively, in river water and 0.09, 0.14, 0.44 and 0.22 μg/g, respectively, in soil. 相似文献
2.
Antiseptic agent carbethopendecinium bromide (septonex) was determined by capillary electrophoresis with capacitively coupled contactless conductivity detection. Optimal separation of this quaternary ammonium ion was achieved in BGE of pH 7.0 containing 30 mM 2-(N-morpholino)ethanesulfonic acid, 12.5 mg/mL of 2-hydroxypropyl-β-cyclodextrin and 20% v/v of acetonitrile. The separation was performed at 25°C in an uncoated fused silica capillary (50 μm id; total length, 60.5 cm; effective length, 50 cm) at 30 kV. Samples were injected hydrodynamically at 50 mbar for 6 s. For quantitative analysis, L-arginine (500 μg/mL) was used as internal standard. The calibration curve was rectilinear for 25-400 μg/mL of septonex (y=0.0113x-0.0063; r(2)=0.9992). The LOD was 7 μg/mL of septonex (at S/N=3). The run-to-run repeatability (n=6) was characterized by the RSDs of 0.18% for the migration time and 1.96% for the analyte/internal standard peak area ratio. Accuracy tested by recovery experiments at three concentration levels gave recoveries of 100.27-104.22% with RSD ≤2.19%. The method was successfully applied to the assay of carbethopendecinium bromide in eye drops. Quaternary ammonium ions having structure and size close to that of carbethopendecinium may not be resolved from the analyte. 相似文献
3.
A method to determine five fluoroquinolones (FQs), namely, rufloxacin (RUF), ciprofloxacin (CIP), enrofloxacin (ENO), gatifloxacin (GAT) and moxifloxacin (MOX), in acidic buffer by capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C4D) technique is presented. Separation was carried out in a fused-silica capillary (42 cm × 50 μm) using a buffer composed of 10 mM tartaric acid, 14 mM sodium acetate and 15% (v/v) methanol at pH 3.8. The RSDs of the migration times and peak areas were 0.65% and 12.3% (intraday), 1.28% and 8.8% (interday), respectively. CE-C4D in combination with liquid–liquid extraction (LLE) as clean-up and preconcentration procedure, allows detection of the FQs in fortified chicken muscle samples with detection limits of 6.8–11.7 ng/g. This method shows potential in rapid determination of FQs in samples with complex matrix. 相似文献
4.
The separation and detection of commonly used preservatives (benzoate, sorbate) and vitamin C by both conventional CE and microchip electrophoresis with capacitively coupled contactless conductivity detection is presented. The separation was optimized by adjusting the pH-value of the buffer and the use of hydroxypropyl-beta-CD (HP-beta-CD) and CTAB as additives. For conventional CE, optimal separation conditions were achieved in a histidine/tartrate buffer at pH 6.5, containing 0.025% HP-beta-CD and 0.1 mM CTAB. LOD ranged from 0.5 to 3 mg/L (S/N = 3) and the RSDs for migration time and peak area were less than 0.1 and 2%, respectively. A considerable reduction of analysis time can be accomplished by using microchip electrophoresis without significant loss in sensitivity under optimal separation conditions. A histidine/tartrate buffer at pH 6.5, incorporating 0.06% HP-beta-CD and 0.25 mM CTAB, gave detection limits ranging between 3 and 10 mg/L and satisfactory reproducibilities of < or =0.4% for the migration time and < or =3.5% for the peak area. The methods developed are useful for the quantitative determination of food additives in real samples such as soft drinks and vitamin C tablets. 相似文献
5.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants. 相似文献
6.
Electromembrane extraction (EME) proved to be a simple and rapid pretreatment method for analysis of amino acids and related compounds in body fluid samples. Body fluids were acidified to the final concentration of 2.5 M acetic acid and served as donor solutions. Amino acids, present as cations in the donor solutions, migrated through a supported liquid membrane (SLM) composed of 1-ethyl-2-nitrobenzene/bis-(2-ethylhexyl)phosphonic acid (85:15 (v/v)) into the lumen of a porous polypropylene hollow fiber (HF) on application of electric field. The HF was filled with 2.5 M acetic acid serving as the acceptor solution. Matrix components in body fluids were efficiently retained on the SLM and did not interfere with subsequent analysis. Capillary electrophoresis with capacitively coupled contactless conductivity detection was used for determination of 17 underivatized amino acids in background electrolyte solution consisting of 2.5 M acetic acid. Parameters of EME, such as composition of SLM, pH and composition of donor and acceptor solution, agitation speed, extraction voltage, and extraction time were studied in detail. At optimized conditions, repeatability of migration times and peak areas of 17 amino acids was better than 0.3% and 13%, respectively, calibration curves were linear in a range of two orders of magnitude (r(2)=0.9968-0.9993) and limits of detection ranged from 0.15 to 10 μM. Endogenous concentrations of 12 amino acids were determined in EME treated human serum, plasma, and whole blood. The method was also suitable for simple and rapid pretreatment and determination of elevated concentrations of selected amino acids, which are markers of severe inborn metabolic disorders. 相似文献
7.
A study on the separation of lipophilic quaternary ammonium cations in NACE coupled with contactless conductivity detection (NACE‐C4D) is presented. The suitability of different salts dissolved in various organic solvents as running electrolytes in NACE‐C4D was investigated. A solvent mixture of methanol/acetonitrile at a ratio of 90%:10% v/v showed the best results. Deoxycholic acid sodium salt as BGE was found to provide exceptional high stability with low baseline noise that leads to highest S/N ratios for the target analytes among all BGEs tested. Under the optimum conditions, capillaries with different internal diameters were examined and an id of 50 μm was found to give best detection sensitivity. The proposed method was validated and showed good linearity in the range from 2.5 to 200 μM, low limits of detection (0.1–0.7 μM) and acceptable reproducibility of peak area (intraday RSD 0.1–0.7%, n = 3; interday RSD 5.9–9.4%, n = 3). 相似文献
8.
Thanh Duc Mai Benjamin Bomastyk Hong Anh Duong Hung Viet Pham Peter C. Hauser 《Analytica chimica acta》2012
An extension of a capillary electrophoresis instrument coupled to a sequential injection analysis manifold was developed for automated measurements with on-line solid-phase extraction preconcentration. An in-house built capacitively coupled contactless conductivity detector was employed for sensitive detection with narrow capillaries of 25 μm internal diameter. The system was assembled into standardized 19 in. frames and racks for easy transport and mobile deployment. The system can be left running unattendedly without manual intervention with good operation stability. To demonstrate the application of the system, a method for the determination of four drugs, namely ibuprofen, diclofenac, naproxen and bezafibrate, was developed with enrichment factors of up to several hundreds. Detection of the drug residues down to the nM-scale was found possible and the method was found suitable for the detection of ibuprofen in the waste water of a hospital in Hanoi. 相似文献
9.
Kambiz A. Mahabadi Isabel Rodriguez Chee Y. Lim Devendra K. Maurya Peter C. Hauser Nico F. de Rooij 《Electrophoresis》2010,31(6):1063-1070
An optimized capacitively coupled contactless conductivity detector for microchip electophoresis is presented. The detector consists of a pair of top–bottom excitation electrodes and a pair of pickup electrodes disposed onto a very thin plastic microfluidic chip. The detection cell formed by the electrodes is completely encased and shielded in a metal housing. These approaches allow for the enhancement of signal coupling and extraction from the detection cell that result in an improved signal‐to‐noise‐ratio and detection sensitivity. The improved detector performance is illustrated by the electrophoretic separation of six cations (NH, K+, Ca2+, Na+, Mg2+, Li+) with a detection limit of approximately 0.3 μM and the analysis of the anions (Br?, Cl?, NO, NO, SO, F?) with a detection limit of about 0.15 μM. These LODs are significantly improved compared with previous reports using the conventional top–top electrode geometry. The developed system was applied to the analysis of ions in bottled drinking water samples. 相似文献
10.
A capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C4D) based on a sequential injection analysis (SIA) manifold was refined. Hydrodynamic injection was implemented to avoid a sampling bias by using a split-injection device based on a needle valve for precise adjustment. For safety and reliability, the integrity of the high voltage compartment at the detection end was fully maintained by implementing flushing of the high voltage interface through the capillary. With this set-up, extended fully automated monitoring applications are possible. The system was successfully tested in the field for the determination of the concentration levels of major inorganic cations and anions in a creek over a period of 5 days. 相似文献
11.
Kubáň P Seiman A Makarõtševa N Vaher M Kaljurand M 《Journal of chromatography. A》2011,1218(18):2618-2625
Rapid, efficient and robust methods for sampling and extracting genuine nerve agents sarin, soman and VX were developed for analyzing these compounds on various solid matrices, such as concrete, tile, soil and vegetation. A portable capillary electrophoretic (CE) system with contactless conductometric detection was used for the in situ analysis of the extracted samples. A 7.5 mM MES/HIS-based separation electrolyte accomplished the analysis of target analytes in less than 5 min. The overall duration of the process including instrument start-up, sample extraction and analysis was less than 10 min, which is the fastest screening of nerve agents achieved with liquid phase separation methods to date. The procedure can easily be performed by a person in a protective suit and is therefore suitable for real-life applications. The CE results were validated by an independent GC-MS method and a satisfactory correlation was obtained. The use of a proper sampling strategy with two internal standards and "smart" data-processing software can overcome the low reproducibility of CE. This has a significant impact on the potential acceptance of portable CE instrumentation for the detection and analysis of genuine chemical warfare agents (CWA). 相似文献
12.
Hanan Alatawi Anna Hogan Ibtihaj Albalawi Emma O'Sullivan-Carroll Yineng Wang Eric Moore 《Electrophoresis》2022,43(7-8):857-864
Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, CE has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP using CE and microchip electrophoresis with capacitively coupled contactless conductivity detection. The determination of these compounds using microchip electrophoresis with capacitively coupled contactless conductivity detection is being reported for the first time. The separation was run for all analytes using a BGE (20 mM β-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 4%, and RSDs obtained for peak area were less than 7%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications. 相似文献
13.
Saccharides form one of the major constituents of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response and receptor activation are regulated by glycosylation. In this work, we optimized a capillary electrophoresis method with capacitively coupled contactless conductivity detection for the separation of eight monosaccharides commonly found in glycoproteins, namely D-glucose, D-galactose, D-mannose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-fucose, N-acetylneuraminic acid, and D-xylose. A highly alkaline solution of 50 mM sodium hydroxide, 22.5 mM disodium phosphate, and 0.2 mM CTAB (pH 12.4) was used as a background electrolyte in a 10 µm id capillary. To achieve baseline separation of all analytes, a counter-directional pressure of –270 kPa was applied during the separation. The limits of detection of our method were below 7 µg/ml (i.e., 1.5 pg or 1 mg/g protein) and the limits of quantification were below 22 µg/ml (i.e., 5 pg or 3 mg/g protein). As a proof of concept of our methodology, we performed an analysis of monosaccharides released from fetuin glycoprotein by acid hydrolysis. The results show that, when combined with an appropriate pre-concentration technique, the developed method can be used as a monosaccharide profiling tool in glycoproteomics and complement the routinely used LC-MS/MS analysis. 相似文献
14.
A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis 总被引:1,自引:0,他引:1
Zuanguang Chen Quanwen Li Oulian Li Xie Zhou You Lan Yuanfang Wei Jinyuan Mo 《Talanta》2007,71(5):1944-1950
A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100 μm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20–110 V in Vp–p) and frequency (40–65 kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10 μmol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available. 相似文献
15.
A simple method using direct injection of human blood samples and quantitative analysis of formate was developed for rapid diagnosis of methanol poisoning. A sample pretreatment device including a 500 Da molecular weight cut-off dialysis membrane was in-line coupled to capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). 50 μL of 1:9 diluted blood samples and 50 μL of DI water were filled into the donor and the acceptor chamber, respectively, and small ionic species in blood samples were electrokinetically injected across the dialysis membrane directly into the separation capillary. Matrix components, such as red blood cells, proteins, lipids and other high molecular weight compounds, were retained by the dialysis membrane and did not interfere with subsequent CE separation. Formate was separated from other small anions in an optimized background electrolyte solution consisting of 20 mM l-histidine and 25 mM l-glutamic acid at pH 4.8. The method showed excellent analytical parameters in terms of repeatability and linearity; RSD values for migration times and peak areas at a formate concentration typical for methanol poisoning were below 0.3% and 7.4%, respectively, and linear calibration curves with correlation coefficients better than 0.999 were obtained. Limit of detection and limit of quantification were 15 and 50 μM formate in original (undiluted) blood samples, respectively. The method was applied to determination of formate in serum samples of a patient diagnosed with acute methanol poisoning. 相似文献
16.
建立了毛细管电泳-非接触电导检测分离测定硫酸沙丁胺醇的分析方法。分别考察了分离介质、背景电解质及其浓度和pH、分离电压、进样时间、激发电压、激发频率等因素对实验结果的影响。在优化的实验条件(以15 mmol/L乳酸水溶液(pH 2.7)为电泳介质,10 kV下电动进样3 s,分离电压为10 kV,激发电压为60 V,激发频率为120 kHz)下,硫酸沙丁胺醇的检出限(信噪比为3)为1.92 mg/L,在9.60~48.0 mg/L质量浓度范围内有良好的线性关系(r=0.995),迁移时间的相对标准偏差(RSD)为2.7%。将该方法用于硫酸沙丁胺醇片和硫酸沙丁胺醇气雾剂中的硫酸沙丁胺醇含量的测定,加标回收率为90%~113%,检测结果与药厂的标示值相符合,为硫酸沙丁胺醇的检测提供了一种简便、快速、高灵敏的方法。关键词: 毛细管电泳;非接触电导检测法;硫酸沙丁胺醇;硫酸沙丁胺醇片;硫酸沙丁胺醇气雾剂 相似文献
17.
Simple in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity method for the determination of colistin 下载免费PDF全文
Patcharin Chaisuwan Thararat Moonta Areeporn Sangcakul Duangjai Nacapricha Prapin Wilairat Kanchana Uraisin 《Journal of separation science》2015,38(6):1035-1041
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time. 相似文献
18.
The use of contactless conductivity detection for the determination of different organic amines in CE was successfully demonstrated. Aliphatic non UV-absorbing species could be determined along absorbing compounds by measuring the conductivity of their protonated forms. The species tested included short-chained aliphatic primary, secondary and tertiary amines, branched aliphatic amines, diamines, hydroxyl-substituted amines as well as species incorporating aromatic and non-aromatic cyclic moieties. Highest sensitivity was obtained with BGE solutions containing solely acetic acid. A concentration of 0.5 M at a pH value of 2.5 was used. Detection limits were in the order of 1 microM. Complete separation of cis- and trans-1,2-diaminocyclohexane could be achieved by adding 18-crown-6 as modifier to the electrolyte solution. 相似文献
19.
Pressure assisted capillary electrophoresis in capillaries with internal diameters of 10 μm was found possible without significant penalty in terms of separation efficiency and sensitivity when using contactless conductivity detection. A sequential injection analysis manifold consisting of a syringe pump and valves was used to impose a hydrodynamic flow in the separation of some inorganic as well as organic cations. It is demonstrated that the approach may be used to optimize analysis time by superimposing a hydrodynamic flow parallel to the electrokinetic motion. It is also possible to improve the separation by using the forced flow to maintain the analytes in the capillary, and thus the separation field, for longer times. The use of the syringe pump allows flexible and precise control of the pressure, so that it is possible to impose pressure steps during the separation. The use of this was demonstrated for the speeding up of late peaks, or forcing repeated passage of the sample plug through the capillary in order to increase separation. 相似文献
20.
Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018 总被引:1,自引:0,他引:1
The publications concerning capacitively coupled contactless conductivity detection for the 2‐year period from mid‐2016 to mid‐2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported. 相似文献