首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of the electron—electron interaction to the conductivity of the two-dimensional electron gas in an Inx Ga1-x As single quantum well with different disorder strengths was experimentally studied. It is shown that the data are described well within the framework of the one-loop approximation of the renormalization group theory so long as the conductivity of the system remains higher than around 15e 2/μh.  相似文献   

2.
We consider effects of electron–electron scattering in wide ballistic microcontacts. Using a semiclassical Boltzmann equation, we obtain a positive correction to the Sharvin conductance that results from electron–electron collisions in the leads. The correction is linearly dependent on temperature at high temperatures T?eVT?eV and proportional to |V||V| at high voltages eV?TeV?T. Magnetic field leads to strong suppression of this positive correction that results in a positive magnetoresistance in weak fields. As electron–electron scattering affects the conductance, it also influences the noise. At low voltages the noise is defined by the Nyquist relation and at high voltages it is related with the inelastic correction to the current by the Shottky formula δS=2eδIδS=2eδI.  相似文献   

3.
4.
We theoretically study the electron–electron scattering rate τee−1for electrons in a two-dimensional electron gas with a perpendicular magnetic field, within theGWand plasmon-pole approximations, as functions of temperatureT, impurity scattering rate Γ and magnetic fieldB. The τee−1increases with increasingTand increasing Γ, and shows the structure of the Landau levels asBis changed.  相似文献   

5.
In modern deep-submicron devices, for achieving optimum device performance, the doping densities must be quite high. This necessitates a careful treatment of the short- and long-range electron–electron and electron–impurity interactions. We have shown before that by using a corrected Coulomb force, in conjunction with a proper cutoff range, one can properly account for the short-range portion of the force. Our approach naturally incorporates multi-ion contributions, local distortions in the scattering potential due to the movement of the free charges, and carrier-density fluctuations. The doping dependence of the low-field electron mobility obtained from 3D resistor simulations closely followed the experimental results, thus proving the correctness of our approach. Here, we discuss how discrete impurity effects affect the threshold voltage of ultra-small n-channel MOSFETs with gate lengths ranging from 50 to 100 nm. We find that the fluctuations in the threshold voltage increase with increasing the oxide thickness and substrate doping. The averaging effect over the width of the device leads to significantly smaller fluctuations in the threshold voltage for devices with larger gate width. The observed trends are in agreement with the experimental findings.  相似文献   

6.
Many-body perturbation theory is developed within the dielectric function method presented in a preceding paper [15]. We have explicitly considered the local field corrections (which are disregarded in the random phase approximation) to the self consistent field. These corrections are of second order in the density-density correlation function x and are evaluated exactly in the framework of the adopted approximation scheme because all the integrals which appear in the expressions can be evaluated analytically. Here the method is applied to π electron systems within the zero differential overlap approximation ; explicit calculations of the excitation energies of the benzene molecule using different parametrizations are presented. Comparison is made with results obtained in the RPA and other schemes.  相似文献   

7.
8.
The behaviour of electrons during electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron energy distribution and velocity distribution are obtained over a wide range of reduced field E/N (the ratio of the electric field to gas molecule density) from 100 to 2000 in units of 1Td=10-17Vcm2. Their effects on the diamond growth are also discussed. The main results obtained are as follows. (1) The velocity profile is asymmetric for the component parallel to the field. The velocity distribution has a peak shift in the field direction. Most electrons possess non-zero velocity parallel to the substrate. (2) The number of atomic H is a function of E/N. (3) High-quality diamond can be obtained under the condition of E/N from 50 to 800Td due to sufficient atomic H and electron bombardment.  相似文献   

9.
A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ(V g ) = (V g ?V g * (T))β with β = 4. The saturation of σ(T) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ(T, V g ) and makes it possible to determine the fraction of microcontacts x(V g , T) with conductances higher than σ. It is found that the dependence x(V g ) is nonlinear and the critical exponent in the formula σ ∝ ? (x - 1/2) t in the range 1.3 < t(T, V g ) < β.  相似文献   

10.
Preparation of novel electron-transfer dyads (donor–acceptor molecules) with novel molecular architecture and well-defined donor/acceptor geometrical orientation is presented. High pressure (HP) promoted synthesis of electron donor–acceptor dyads possessing rigid polynorbornene frameworks and organometallic (7-silanorbornadiene) moiety is discussed in detail. Under HP conditions, cyclic organometallic diene, 1-sila-2,3,4,5-tetraphenyl-1,1-dimethyl-cyclopenta-2,4-diene undergoes facile 4π+2π cycloaddition reactions with functionalized 7-oxanorbornene derivatives giving stereospecifically 7-silanorbornene products in good reaction yields.  相似文献   

11.
阮存军 《中国物理》2003,12(5):483-487
GaAs spin-polarized electron source is a new kind of electron source, where the GaAs semiconductor crystal is used as a photocathode under the irradiation of helicity light. In this paper the activation process of the GaAs spin-polarized electron source is unvestigated experimentally in detail, during which the negative electron affinity of the photo cathode should be achieved more carefully by absorbing the caesium and oxygen on the surface of the GaAs crystal under ultrahigh vacuum conditions. Besides the different activation processes, the important physical parameters are studied to achieve the optimum activation results. At the same time the stability and lifetime of the polarized electron beam are explored for future experiments. Some important experimental data have been acquired.  相似文献   

12.
Changes in the surface structure of K-208 glass after single-time irradiation of its samples with 20-keV electrons and protons are studied using atomic-force microscopy. Irradiation is performed in a vacuum chamber under a pressure of 10–4 Pa; the densities of the electron (? e ) and proton (? р ) fluxes are varied in the range of 1010–2.5 × 1011 cm?2 s?1. Analysis of the samples irradiated in the case where the parameters ? e and ? р increased in a stepwise manner makes it possible to study the appearance, growth, and evolution of microscopic structures on their surfaces. The radiation-stimulated processes of defect annealing and the release and field diffusion of alkali metal ions are accompanied by crystallization of the irradiated glass layer, which gives grounds for the use of dislocation mechanisms for mass transfer in explaining the formation of microprotrusions on its surface. It is shown that the character of changes in the structure is determined by the values of the parameters ? e and ? р and the ratio between them. In particular, it is established that, in the case of electron— proton irradiation of the glass, electrostatic discharges begin to noticeably affect the formation of microprotrusions for ? е > 3? р .  相似文献   

13.
We have studied the effect of dynamic electron correlations on Coulomb drag in a low density symmetric electron–electron bilayer. The drag resistivity is calculated considering the contribution from direct e–e scattering processes using the semi-classical Boltzmann approach, with the effective inter-layer interaction W12(q, ω; T) determined within the ?wierkowski, Szyman?ki, and Gortel model, generalized to include the dynamics of electron correlations through the frequency-dependent intra- and inter-layer local-field correction (LFC) factors. In turn, the LFCs are obtained by extending the quantum Singwi, Tosi, Land, and Sjölander (qSTLS) approach to finite temperatures. At low temperatures (T ? 2 K), the calculated drag resistivity is found to agree nicely with the measurements by Kellogg et al., while it is somewhat overestimated at higher temperatures. The overestimation is seen to increase with decreasing density of electrons. However, there is found to be a marked improvement over the predictions of the conventional (i.e., static) STLS and random-phase approximation (RPA). It turns out that the inclusion of exchange-correlations in the RPA causes a red-shift in the bilayer plasmons which leads to an enhancement of drag resistivity. Our study demonstrates clearly the importance of including the dynamical nature of correlations to have a reasonable account of measured drag resistivity.  相似文献   

14.
We investigate the problem about what the spin-magnetic moment is. The magnetic moment of the Dirac electron in the frame along z-axis is evaluated. This is identified with the spin-magnetic moment of the electron, because there is not any z-component of magnetic moment caused by orbital angular momentum in our frame. The correct value of the spin-magnetic moment and the correct ratio of the spin-magnetic moment to the spin (i.e. g=2) are obtained explicitly. In deriving them, the negative energy solutions of the Dirac equation perform essential roles. We find that the transition current from a positive energy state to a negative energy state causes spin-magnetic moment of the electrons in vacuum. This fact implies that the ratio of the spin-magnetic moment to the spin may change depending on the environments. For example, it may have different values in materials.  相似文献   

15.
The total electron yield (TEY) mode has been developed successfully for XANES measurements at Beamline 4B7A of BSRF (Beijing Synchrotron Radiation Facility). Its performance was studied by measuring sulphur K-edge XANES of three CdS samples (mixed with graphite powder as an electric conductor) with different concentration: 75%, 50% and 25%. The data are collected in TEY mode and fluorescence yield (FY) mode respectively for comparison. The results demonstrate that the TEY spectra of three samples agree well with each other after the background is subtracted and normalized. The measured XANES spectra by TEY mode without bias and with 100V bias are almost identical to one another, but the signal-to-noise ratio of spectra measured without bias is better than that with 100V bias. The consistency of the self-absorption corrected FY spectra and TEY spectra are within 10% for the three samples.  相似文献   

16.
17.
We perform a global fit on parity-conserving electron–quark interactions via spin-1 unparticle exchange. Besides the peculiar features of unparticle exchange due to non-integral values for the scaling dimension \(d_{\mathcal {U}}\) and a non-trivial phase factor \(\exp (-id_{\mathcal {U}}\pi)\) associated with a time-like unparticle propagator, the energy dependence of the unparticle contributions in the scattering amplitudes are also taken into account. The high energy data sets taken into consideration in our analysis are from (1) deep inelastic scattering at high Q 2 from ZEUS and H1, (2) Drell–Yan production at Run II of CDF and DØ, and (3) e + e ?→ hadrons at LEPII. The hadronic data at LEPII by itself indicated a 3–4 sigma preference of new physics over the Standard Model. However, when all data sets are combined, no preference for unparticle effects can be given. We thus deduce an improved 95% confidence level limit on the unparticle energy scale \(\varLambda_{\mathcal {U}}\).  相似文献   

18.
Improved measurement of electron antineutrinodisappearance at Daya Bay   总被引:1,自引:0,他引:1  
We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin2 θ13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GWth were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944±0.007(stat.)±0.003(syst.). An analysis of the relative rates in six detectors finds sin2 θ13 =0.089±0.010(stat.)±0.005(syst.) in a three-neutrino framework.  相似文献   

19.
A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm − 3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm − 3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~14 MeV, with an energy spread of ±7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~23 MeV, with an energy spread of ±7.5 MeV.  相似文献   

20.
In nuclear magnetic resonance of paramagnetic systems, cross-correlations between the fluctuations of a nucleus—nucleus dipole—dipole coupling Ik Il and a nucleus—electron dipole coupling IkS induces cross-relaxation and makes it possible to generate bilinear terms in the density matrix of the type 2Ik xIl z from coherence Ik x that can lead to ‘relaxation-allowed’ coherence transfer between two nuclei Ik and Il . In this paper these effects are demonstrated in a complex involving a fragment of double-stranded DNA and two chromomycin molecules complexing a paramagnetic cobalt ion. Analytical expressions are given for the cross-correlation rates in particular conditions, while the extension to anisotropic g tensors or zero field splittings are addressed. It is shown that relaxation-allowed coherence transfer leads to characteristic signals in double-quantum filtered correlation spectroscopy (DQF—COSY), but not in total correlation spectroscopy (TOCSY). Analytical expressions are unable to reproduce the observed cross-peak patterns. A careful numerical study reveals that in the high spin Co(II) complex studied here, the cross-correlation dynamic shift contribution is of the same order of magnitude as the cross-correlation rate, a value much larger than what can be computed assuming isotropic Brownian motion and complete separation between the electron spin and the lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号