首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimental data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wavevelocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than theexperimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Si p states indicates a certain covalency of the Os-Si bonds.  相似文献   

3.
硅基外延OsSi2电子结构及光电特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
余志强 《物理学报》2012,61(21):380-387
基于第一性原理密度泛函理论的赝势平面波方法,对Si(111)基外延稳定正交相OsSi2的能带结构、态密度以及光电特性进行了研究.研究结果表明,Si(111)基外延稳定正交相的OsSi2是一种间接带隙半导体,禁带宽度为0.625 eV;其价带主要是由硅的3s,3p态电子和锇的5d态电子构成,导带主要由锇的5d态电子与硅的3s,3p态电子构成;其静态介电函数为15.065,折射率为3.85,吸收系数最大峰值为3.9665×105cm-1.利用理论计算的能带结构和态密度研究了Si(111)基外延稳定正交相OsSi2的介电函数、折射率、吸收系数、光电导率和能量损失函数的变化规律,为Si(111)基外延OsSi2的应用提供了理论基础.  相似文献   

4.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.  相似文献   

5.
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.  相似文献   

6.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

7.
Structural parameters, elastic, mechanical, electronic, chemical bonding, and optical properties of tetragonal HfSiO4 have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory. The ground-state properties obtained by minimizing the total energy are in agreement with the available experimental and theoretical data. This compound is found to be mechanically stable, and we have obtained the bulk, shear, and Young's modulus; Poisson's coefficient; and Lamé's constants. We have estimated the Debye temperature of tetragonal HfSiO4 from the acoustic velocity. Electronic and chemical bonding properties have been studied. Moreover, the complex dielectric function, refractive index, extinction coefficient, absorption coefficient, energy-loss spectrum, optical reflectivity, and complex conductivity function are calculated and analyzed.  相似文献   

8.
ZnO电子结构与光学性质的第一性原理计算   总被引:1,自引:0,他引:1  
计算了ZnO电子结构和光学线性响应函数,从理论上给出了ZnO材料电子结构与光学性质的关系。所有计算都是基于密度泛函理论框架下的第一性原理平面波超软赝势方法。利用精确计算的能带结构和态密度分析了带间跃迁占主导地位的ZnO材料的介电函数、反射谱、反射率以及消光率,理论结果与实验符合甚佳,为ZnO光电材料的设计与应用提供了理论依据。同时,计算结果也为精确监测和控制ZnO材料的生长过程提供了可能性。  相似文献   

9.
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first -principles method based on the plane-wave basis set. Analysis of band structures suggests that the rock-salt AIN has an indirect gap of 4.53 eV, which is in good agreement with other results. By investigating the effects of pressure on the energy gap, the different movement of conduction band at X point below and above 22.5 GPa is predicted. The optical properties including dielectric function, absorption, reflectivity, and refractive index are also calculated and analyzed. It is found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does the transparence affected by the pressure. Furthermore, the curve of optical spectrum will shift to high energy area (blue shift) with increasing pressure.  相似文献   

10.
Guemou  M.  Khelil  M.  Moussa  R.  Abdiche  A. 《Physics of the Solid State》2020,62(12):2467-2473
Physics of the Solid State - Since its discovery in 2004, graphene has attracted the intention of several researchers in the world because of its fascinating electronic and mechanical properties....  相似文献   

11.
We report a systematic study of the structural, electronic, optical and elastic properties of the ternary ruthenium-based hydrides A2RuH6 (A = Mg, Ca, Sr and Ba) within two complementary first-principles approaches. We describe the properties of the A2RuH6 systems looking for trends on different properties as a function of the A sublattice. Our results are in agreement with experimental ones when the latter are available. In particular, our theoretical lattice parameters obtained using the GGA-PBEsol to include the exchange-correlation functional are in good agreement with experiment. Analysis of the calculated electronic band structure diagrams suggests that these hydrides are wide nearly direct band semiconductors, with a very slight deviation from the ideal direct-band gap behaviour and they are expected to have a poor hole-type electrical conductivity. The TB-mBJ potential has been used to correct the deficiency of the standard GGA for predicting the optoelectronic properties. The calculated TB-mBJ fundamental band gaps are about 3.53, 3.11, 2.99 and 2.68 eV for Mg2RuH6, Ca2RuH6, Sr2RuH6 and Ba2RuH6, respectively. Calculated density of states spectra demonstrates that the topmost valence bands consist of d orbitals of the Ru atoms, classifying these materials as d-type hydrides. Analysis of charge density maps tells that these systems can be classified as mixed ionic-covalent bonding materials. Optical spectra in a wide energy range from 0 to 30 eV have been provided and the origin of the observed peaks and structures has been assigned. Optical spectra in the visible range of solar spectrum suggest these hydrides for use as antireflection coatings. The single-crystal and polycrystalline elastic moduli and their related properties have been numerically estimated and analysed for the first time.  相似文献   

12.
Based on the hexagonal BN structure, six possible layered B~ CN structures are constructed. Their total energies, lattice constants as well as electronic properties are calculated using the ab initio pseudopotential density functional method within the local density approximation. The calculated results show that the B2 CN-V configuration with AA stacking sequence is the most stable among the six B2CN layered structures. The characteristics of electronic structures indicate that the B2 CN-V shows metallicity, which mainly comes from -B1-C-B1-C- chains.  相似文献   

13.
14.
The elastic properties and electronic structure of B2 phase binary TiM (M =Fe, Co, Ni, Pd, Pt and Au) and ternary TisoNi43.75Pd6.25, TisoNi43.75Cu6.25 shape memory alloys are studied by the plane-wave psedudopotential method within the local density approximation. The elastic constants and density of states are calculated. Our calculations show that the martensitic transformation behaviour of these alloys is closely related to their elastic properties. The Ti d DOS at the Fermi level is mainly responsible for the B2 phase stability of these alloys.  相似文献   

15.
    
We have revisited and refined the high‐pressure elastic properties of body‐centered‐cubic Ta using the accurate all‐electron full potential linearized augmented plane wave method (FP‐LAPW) within the framework of density functional theory (DFT). Based on the total energy calculations, we first deduced the accurate static equation of state (EOS) of Ta. Then we derived the elastic constants, C11, C12, and C44 under pressure up to 500 GPa using the pressure‐correction method which corrected the previous method theoretically, and the calculated elastic constants agree well with experiment under high pressure. From the accurately determined elastic constants, we also discussed the elastic anisotropy and the sound velocities of Ta at high pressure. The predicted Debye temperature at 0 GPa and 0 K is in good agreement with experiment, and the Debye temperature increases monotonously as pressure increases.  相似文献   

16.
    
H.Y. Wu  Y.H. Chen  C.R. Deng  X.Y. Han  P.F. Yin 《哲学杂志》2015,95(21):2240-2256
The electronic, elastic and dynamical properties of MgSe in the rocksalt (B1) and iron silicide (B28) phase and the effects of pressure on these properties are investigated using first-principles method. The calculated electronic band structure indicates that the B1 phase of MgSe presents an indirect band-gap feature and the band gaps initially increase with pressure and subsequently decrease upon compression. Remarkably, an indirect-to-direct band-gap transition has been observed at the phase transition pressure. The elastic constants, bulk modulus, shear modulus, Young’s modulus, elastic anisotropy and B/G ratio of MgSe in the B1 and B28 phase at high pressure have also been investigated. The bulk modulus, shear modulus and Young’s modulus all increase monotonously with the increasing of pressure for the B1 and B28 phase of MgSe. The calculated phonon frequencies of the B1 phase at zero pressure agree well with available theoretical results. And the transverse acoustic phonon TA(X) mode of this phase completely softening to zero at 82 GPa. The phonon curves of the B28 phase under pressure have also been successfully investigated.  相似文献   

17.
Elastic properties of platinum nitride (PtN) are studied by first-principles calculations with the fully relativistic full potential linearized augmented plane-wave (LAPW) method, the plane-wave ultrasoft pseudopotential (PWPP) and the projector-augmented wave (PAW) methods. The results reveal that: (1) the scalar relativistic scheme is sufficient to treat the valence electronic structure, i.e. the spin-orbit effect has little effect on the bulk modulus value of platinum nitride; (2) the all-electron full potential method is no more accurate than the pseudopotential and PAW-based methods when calculating the lattice constant and bulk modulus properties of the platinum nitride; (3) platinum nitride in zinc-blende structure is unstable and its crystal structure is still an open problem.  相似文献   

18.
颜小珍  邝小渝  毛爱杰  匡芳光  王振华  盛晓伟 《物理学报》2013,62(10):107402-107402
采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响.关键词:高压弹性性质电子结构热力学性质  相似文献   

19.
First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.  相似文献   

20.
第一性原理研究霰石的电子结构和光学性质   总被引:1,自引:0,他引:1  
程正则 《光学学报》2008,28(11):2187-2190
采用线性缀加平面波方法,研究了霰行的主要成分CaCO3的电子结构和线性光学特性,结果发现,霰石的主要成分CaCO3是一种具有直接带隙4.29119 eV的化合物,在这种化合物中,C原子的2s态和O原子的2s态杂化形成了阴离子[CO3]2-,并解释了介电函数虚部主要峰的形成原因,同时计算和研究了霰石的吸收系数、能量损失系数、折射系数和湮灭系数等光学性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号