首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Let ${P(t) \in \mathbb{Q}[t]}$ be an irreducible quadratic polynomial and suppose that K is a quartic extension of ${\mathbb{Q}}$ containing the roots of P(t). Let ${{\bf N}_{K/\mathbb{Q}}({\rm x})}$ be a full norm form for the extension ${K/\mathbb{Q}}$ . We show that the variety $$\begin{array}{ll}P(t)={\bf N}_{K/\mathbb{Q}}({\rm x})\neq 0\end{array}$$ satisfies the Hasse principle and weak approximation. The proof uses analytic methods.  相似文献   

2.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

3.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

4.
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .  相似文献   

5.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

6.
We investigate the translation equation $$F(s+t, x) = F(s, F(t, x)),\quad \quad s,t\in{\mathbb{C}},\qquad\qquad\qquad\qquad({\rm T})$$ in ${\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ , the ring of formal power series over ${\mathbb{C}}$ . Here we restrict ourselves to iteration groups of type II, i.e. to solutions of (T) of the form ${F(s, x) \equiv x + c_k(s)x^k {\rm mod} x^{k + 1}}$ , where k ≥ 2 and c k ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions c n (s) of $$F(s, x) = x + \sum_{n \ge q k}c_n(s)x^n$$ are polynomials in c k (s). It is possible to replace this additive function c k by an indeterminate. In this way we obtain a formal version of the translation equation in the ring ${(\mathbb{C}[y])\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character (depending on certain parameters, the coefficients of the infinitesimal generator H of an iteration group of type II) of these polynomials. Rewriting the solutions G(y, x) of the formal translation equation in the form ${\sum_{n\geq 0}\phi_n(x)y^n}$ as elements of ${(\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right])\left[\kern-0.15em\left[{y}\right]\kern-0.15em\right]}$ , we obtain explicit formulas for ${\phi_n}$ in terms of the derivatives H (j)(x) of the generator ${H}$ and also a representation of ${G(y, x)}$ as a Lie–Gröbner series. Eventually, we deduce the canonical form (with respect to conjugation) of the infinitesimal generator ${H}$ as x k + hx 2k-1 and find expansions of the solutions ${G(y, x) = \sum_{r\geq 0} G_r(y, x)h^r}$ of the above mentioned differential equations in powers of the parameter h.  相似文献   

7.
Let $\mathbb{K}$ be a finite extension of a characteristic zero field $\mathbb{F}$ . We say that a pair of n × n matrices (A,B) over $\mathbb{F}$ represents $\mathbb{K}$ if $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle B \right\rangle }}} \right. \kern-0em} {\left\langle B \right\rangle }}$ , where $\mathbb{F}\left[ A \right]$ denotes the subalgebra of $\mathbb{M}_n \left( \mathbb{F} \right)$ containing A and 〈B〉 is an ideal in $\mathbb{F}\left[ A \right]$ , generated by B. In particular, A is said to represent the field $\mathbb{K}$ if there exists an irreducible polynomial $q\left( x \right) \in \mathbb{F}\left[ x \right]$ which divides the minimal polynomial of A and $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle {q\left( A \right)} \right\rangle }}} \right. \kern-0em} {\left\langle {q\left( A \right)} \right\rangle }}$ . In this paper, we identify the smallest order circulant matrix representation for any subfield of a cyclotomic field. Furthermore, if p is a prime and $\mathbb{K}$ is a subfield of the p-th cyclotomic field, then we obtain a zero-one circulant matrix A of size p × p such that (A, J) represents $\mathbb{K}$ , where J is the matrix with all entries 1. In case, the integer n has at most two distinct prime factors, we find the smallest order 0, 1-companion matrix that represents the n-th cyclotomic field. We also find bounds on the size of such companion matrices when n has more than two prime factors.  相似文献   

8.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

9.
Let p be a prime and let $\varphi\in\mathbb{Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ be a symmetric polynomial, where  $\mathbb {Z}_{p}$ is the field of p elements. A sequence T in  $\mathbb {Z}_{p}$ of length p is called a φ-zero sequence if φ(T)=0; a sequence in $\mathbb {Z}_{p}$ is called a φ-zero free sequence if it does not contain any φ-zero subsequence. Motivated by the EGZ theorem for the prime p, we consider symmetric polynomials $\varphi\in \mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ , which satisfy the following two conditions: (i) every sequence in  $\mathbb {Z}_{p}$ of length 2p?1 contains a φ-zero subsequence, and (ii) the φ-zero free sequences in  $\mathbb {Z}_{p}$ of maximal length are all those containing exactly two distinct elements, where each element appears p?1 times. In this paper, we determine all symmetric polynomials in $\mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ of degree not exceeding 3 satisfying the conditions above.  相似文献   

10.
11.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

12.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

13.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

14.
Let ${\mathbb{K}}$ be a field and ${S = \mathbb{K}[x_1,\dots,x_n]}$ be the polynomial ring in n variables over the field ${\mathbb{K}}$ . In this paper, it is shown that Stanley’s conjecture holds for I and S/I if I is a product of monomial prime ideals or I is a high enough power of a polymatroidal or a stable ideal generated in a single degree.  相似文献   

15.
Let qp s be a power of a prime number p and let ${\mathbb {F}_{\rm q}}$ be a finite field with q elements. This paper aims to demonstrate the utility and relation of composed products to other areas such as the factorization of cyclotomic polynomials, construction of irreducible polynomials, and linear recurrence sequences over ${\mathbb {F}_{\rm q}}$ . In particular we obtain the explicit factorization of the cyclotomic polynomial ${\Phi_{2^nr}}$ over ${\mathbb {F}_{\rm q}}$ where both r ≥ 3 and q are odd, gcd(q, r) = 1, and ${n\in \mathbb{N}}$ . Previously, only the special cases when r = 1, 3, 5, had been achieved. For this we make the assumption that the explicit factorization of ${\Phi_r}$ over ${\mathbb {F}_{\rm q}}$ is given to us as a known. Let ${n = p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}}$ be the factorization of ${n \in \mathbb{N}}$ into powers of distinct primes p i , 1 ≤ i ≤ s. In the case that the multiplicative orders of q modulo all these prime powers ${p_i^{e_i}}$ are pairwise coprime, we show how to obtain the explicit factors of ${\Phi_{n}}$ from the factors of each ${\Phi_{p_i^{e_i}}}$ . We also demonstrate how to obtain the factorization of ${\Phi_{mn}}$ from the factorization of ${\Phi_n}$ when q is a primitive root modulo m and ${{\rm gcd}(m, n) = {\rm gcd}(\phi(m),{\rm ord}_n(q)) = 1.}$ Here ${\phi}$ is the Euler’s totient function, and ord n (q) denotes the multiplicative order of q modulo n. Moreover, we present the construction of a new class of irreducible polynomials over ${\mathbb {F}_{\rm q}}$ and generalize a result due to Varshamov (Soviet Math Dokl 29:334–336, 1984).  相似文献   

16.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

17.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

18.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

19.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号