首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
For a given class \({\mathcal{G}}\) of groups, a 3-manifold M is of \({\mathcal{G}}\) -category \({\leq k}\) if it can be covered by k open subsets such that for each path-component W of the subsets the image of its fundamental group \({ \pi_1(W) \rightarrow \pi(M )}\) belongs to \({\mathcal{G}}\) . The smallest number k such that M admits such a covering is the \({\mathcal{G}}\) -category, \({cat_{\mathcal{G}}(M)}\) . If M is closed, it has \({\mathcal{G}}\) -category between 1 and 4. We characterize all closed 3-manifolds of \({\mathcal{G}}\) -category 1, 2, and 3 for various classes \({\mathcal{G}}\) .  相似文献   

2.
3.
Let S be a subgroup of a group G. A set ${\Pi= \{H_1, \ldots , H_n\}}$ of subgroups ${H_i (i = 1, \ldots ,n)}$ with ${G=\cup_{H_i\in\Pi}H_i}$ is said to be an equal quasi-partition of G if ${H_i\cap H_j\cong S}$ and ${|H_i|=|H_j|}$ for all ${H_i, H_j\in\Pi}$ with ${i\ne j}$ . In this paper we investigate finite p-groups such that a subset of their maximal subgroups form an equal quasi-partition.  相似文献   

4.
An additive functor $F \colon {\mathcal A}\to{\mathcal B}$ between preadditive categories $\mathcal A$ and $\mathcal B$ is said to be a local functor if, for every morphism $f\colon A\to A'$ in $\mathcal A$ , F(f) isomorphism in $\mathcal B$ implies f isomorphism in $\mathcal A$ . We show that there exist several pairs $(\mathcal I_1,\mathcal I_2)$ of ideals of $\mathcal A$ for which the canonical functor $\mathcal A\to\mathcal A/\mathcal I_1\times \mathcal A/\mathcal I_2$ is a local functor. In most of our examples, the category $\mathcal A$ is a full subcategory of the category Mod?-R of all right modules over a ring R. These pairs of ideals arise in a surprisingly natural way and enjoy several properties. Ideals are kernels of functors, and most of our examples of ideals are kernels of important and well studied functors. E.g., (1) the kernel Δ of the canonical functor P of Mod?-R into its spectral category Spec(Mod?-R), so that Δ is the ideal of all morphisms with an essential kernel; (2) the kernel Σ of the dual functor F of P, so that Σ is the ideal of all morphisms with a superfluous image; (3) the kernels Δ(1) and Σ(1) of the first derived functors P (1) and F (1) of P and F, respectively; (4) the kernels of suitable functors Hom and ? and their first derived functors ${\rm Ext}^1_R$ and ${\rm Tor}^R_1$ .  相似文献   

5.
In this paper, we give an example of a complete computable infinitary theory T with countable models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ and T has no uncountable model. In fact, ${\mathcal{M}}$ and ${\mathcal{N}}$ are (up to isomorphism) the only models of T. Moreover, for all computable ordinals α, the computable ${\Sigma_\alpha}$ part of T is hyperarithmetical. It follows from a theorem of Gregory (JSL 38:460–470, 1972; Not Am Math Soc 17:967–968, 1970) that if T is a Π 1 1 set of computable infinitary sentences and T has a pair of models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ , then T would have an uncountable model.  相似文献   

6.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume dimV ≥ 4 and ¦ $\mathbb{F}$ ¦ ≥ 4. We consider a permutation ? of the central affine quadric $\mathcal{F}$ := {x εV ¦q(x) = 1} such that $$(*)x \cdot y = \mu \Leftrightarrow x^\varphi \cdot y^\varphi = \mu \forall x,y\varepsilon \mathcal{F}$$ holds true, where μ is a fixed element of $\mathbb{F}$ and where “·” is the scalar product associated withq. We prove that ? is induced (in a certain sense) by a semi-linear bijection (σ,?): (V, $\mathbb{F}$ ) → (V, $\mathbb{F}$ ) such thatq o ?o q, provided $\mathcal{F}$ contains lines and the pair (μ, $\mathbb{F}$ ) has additional properties if there ar no planes in $\mathcal{F}$ . The cases μ, 0 and μ = 0 require different techniques.  相似文献   

7.
Let qp s be a power of a prime number p and let ${\mathbb {F}_{\rm q}}$ be a finite field with q elements. This paper aims to demonstrate the utility and relation of composed products to other areas such as the factorization of cyclotomic polynomials, construction of irreducible polynomials, and linear recurrence sequences over ${\mathbb {F}_{\rm q}}$ . In particular we obtain the explicit factorization of the cyclotomic polynomial ${\Phi_{2^nr}}$ over ${\mathbb {F}_{\rm q}}$ where both r ≥ 3 and q are odd, gcd(q, r) = 1, and ${n\in \mathbb{N}}$ . Previously, only the special cases when r = 1, 3, 5, had been achieved. For this we make the assumption that the explicit factorization of ${\Phi_r}$ over ${\mathbb {F}_{\rm q}}$ is given to us as a known. Let ${n = p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}}$ be the factorization of ${n \in \mathbb{N}}$ into powers of distinct primes p i , 1 ≤ i ≤ s. In the case that the multiplicative orders of q modulo all these prime powers ${p_i^{e_i}}$ are pairwise coprime, we show how to obtain the explicit factors of ${\Phi_{n}}$ from the factors of each ${\Phi_{p_i^{e_i}}}$ . We also demonstrate how to obtain the factorization of ${\Phi_{mn}}$ from the factorization of ${\Phi_n}$ when q is a primitive root modulo m and ${{\rm gcd}(m, n) = {\rm gcd}(\phi(m),{\rm ord}_n(q)) = 1.}$ Here ${\phi}$ is the Euler’s totient function, and ord n (q) denotes the multiplicative order of q modulo n. Moreover, we present the construction of a new class of irreducible polynomials over ${\mathbb {F}_{\rm q}}$ and generalize a result due to Varshamov (Soviet Math Dokl 29:334–336, 1984).  相似文献   

8.
A subgroup property $\alpha $ is transitive in a group $G$ if $U \alpha V$ and $V \alpha G$ imply that $U \alpha G$ whenever $U \le V \le G$ , and $\alpha $ is persistent in $G$ if $U \alpha G$ implies that $U \alpha V$ whenever $U \le V \le G$ . Even though a subgroup property $\alpha $ may be neither transitive nor persistent, a given subgroup $U$ may have the property that each $\alpha $ -subgroup of $U$ is an $\alpha $ -subgroup of $G$ , or that each $\alpha $ -subgroup of $G$ in $U$ is an $\alpha $ -subgroup of $U$ . We call these subgroup properties $\alpha $ -transitivity and $\alpha $ -persistence, respectively. We introduce and develop the notions of $\alpha $ -transitivity and $\alpha $ -persistence, and we establish how the former property is related to $\alpha $ -sensitivity. In order to demonstrate how these concepts can be used, we apply the results to the cases in which $\alpha $ is replaced with “normal” and the “cover-avoidance property.” We also suggest ways in which the theory can be developed further.  相似文献   

9.
The purpose of this article is to generalize some results of Vatsal on the special values of Rankin–Selberg L-functions in an anticyclotomic \({\mathbb{Z}_{p}}\) -extension. Let g be a cuspidal Hilbert modular newform of parallel weight \({(2,\ldots,2)}\) and level \({\mathcal{N}}\) over a totally real field F, and let K/F be a totally imaginary quadratic extension of relative discriminant \({\mathcal{D}}\) . We study the l-adic valuation of the special values \({L(g,\chi,\frac{1}{2})}\) as \({\chi}\) varies over the ring class characters of K of \({\mathcal{P}}\) -power conductor, for some fixed prime ideal \({\mathcal{P}}\) . We prove our results under the only assumption that the prime to \({\mathcal{P}}\) part of \({\mathcal{N}}\) is relatively prime to \({\mathcal{D}}\) .  相似文献   

10.
For ${N = 1, 2,\ldots,}$ let S N be a simple random sample of size n = n N from a population A N of size N, where ${0 \leq n \leq N}$ . Then with f N n/N, the sampling fraction, and 1 A the inclusion indicator that ${A \in S_N}$ , for any ${H \subset A_N}$ of size ${k \geq 0}$ , the high order correlations $${\rm Corr}(k) = E \big(\mathop{\Pi}\limits_{A \in H} ({\bf 1}_A - f_N )\big)$$ depend only on k, and if the sampling fraction ${f_N \rightarrow f}$ as ${N \rightarrow \infty}$ , then $$N^{k/2}{\rm Corr}(k) \rightarrow [f (f - 1)]^{k/2}EZ^{k}, k \,{\rm even}$$ and $$N^{(k+1)/2}{\rm Corr}(k) \rightarrow [f (f - 1)]^{(k-1)/2}(2f - 1)\frac{1}{3}(k - 1)EZ^{k+1}, k \,{\rm odd}$$ where Z is a standard normal random variable. This proves a conjecture given in [2].  相似文献   

11.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume $4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$ . A 1-isometry of the central quadric $\mathcal{F}: = \{ x \in V|q(x) = 1\}$ is a permutation ? of $\mathcal{F}$ such that (*) $$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$ holds true for a fixed element ν of $\mathbb{F}$ . For arbitraryν $\mathbb{F}$ we prove that? is induced (in a certain sense) by a semi-linear bijection $(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$ such thatq oσ =? oq, provided $\mathcal{F}$ contains lines and the exceptional case $(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$ is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.  相似文献   

12.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

13.
Let $P \subseteq \mathbb{R }^d$ P ? R d be a $d$ d -dimensional $n$ n -point set. A Tverberg partition is a partition of $P$ P into $r$ r sets $P_1, \dots , P_r$ P 1 , ? , P r such that the convex hulls $\hbox {conv}(P_1), \dots , \hbox {conv}(P_r)$ conv ( P 1 ) , ? , conv ( P r ) have non-empty intersection. A point in $\bigcap _{i=1}^{r} \hbox {conv}(P_i)$ ? i = 1 r conv ( P i ) is called a Tverberg point of depth $r$ r for $P$ P . A classic result by Tverberg shows that there always exists a Tverberg partition of size $\lceil n/(d+1) \rceil $ ? n / ( d + 1 ) ? , but it is not known how to find such a partition in polynomial time. Therefore, approximate solutions are of interest. We describe a deterministic algorithm that finds a Tverberg partition of size $\lceil n/4(d+1)^3 \rceil $ ? n / 4 ( d + 1 ) 3 ? in time $d^{O(\log d)} n$ d O ( log d ) n . This means that for every fixed dimension we can compute an approximate Tverberg point (and hence also an approximate centerpoint) in linear time. Our algorithm is obtained by combining a novel lifting approach with a recent result by Miller and Sheehy (Comput Geom Theory Appl 43(8):647–654, 2010).  相似文献   

14.
A k-matching cover of a graph \(G\) is a union of \(k\) matchings of \(G\) which covers \(V(G)\) . The matching cover number of \(G\) , denoted by \(mc(G)\) , is the minimum number \(k\) such that \(G\) has a \(k\) -matching cover. A matching cover of \(G\) is optimal if it consists of \(mc(G)\) matchings of \(G\) . In this paper, we present an algorithm for finding an optimal matching cover of a graph on \(n\) vertices in \(O(n^3)\) time (if use a faster maximum matching algorithm, the time complexity can be reduced to \(O(nm)\) , where \(m=|E(G)|\) ), and give an upper bound on matching cover number of graphs. In particular, for trees, a linear-time algorithm is given, and as a by-product, the matching cover number of trees is determined.  相似文献   

15.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

16.
Let ${\mathcal{F}}$ be a (0, 1) matrix. A (0, 1) matrix ${\mathcal{M}}$ is said to have ${\mathcal{F}}$ as a configuration if there is a submatrix of ${\mathcal{M}}$ which is a row and column permutation of ${\mathcal{F}}$ . We say that a matrix ${\mathcal{M}}$ is simple if it has no repeated columns. For a given ${v \in \mathbb{N}}$ , we shall denote by forb ${(v, \mathcal{F})}$ the maximum number of columns in a simple (0, 1) matrix with v rows for which ${\mathcal{F}}$ does not occur as a configuration. We say that a matrix ${\mathcal{M}}$ is maximal for ${\mathcal{F}}$ if ${\mathcal{M}}$ has forb ${(v, \mathcal{F})}$ columns. In this paper we show that for certain natural choices of ${\mathcal{F}}$ , forb ${(v, \mathcal{F})\leq\frac{\binom{v}{t}}{t+1}}$ . In particular this gives an extremal characterization for Steiner t-designs as maximal (0, 1) matrices in terms of certain forbidden configurations.  相似文献   

17.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

18.
Let p 1p 2 ≡ 1 (mod 8) be primes such that \(\left( {\tfrac{{p_1 }} {{p_2 }}} \right) = - 1\) and \(\left( {\tfrac{2} {{a + b}}} \right) = - 1\) , where p 1 p 2 = a 2+b 2. Let \(i = \sqrt { - 1} \) , d = p 1 p 2, \(\Bbbk = \mathbb{Q}(\sqrt {d,} i),\Bbbk _2^{(1)} \) be the Hilbert 2-class field and \(\Bbbk ^{(*)} = \mathbb{Q}(\sqrt {p_1 } ,\sqrt {p_2 } ,i)\) be the genus field of \(\Bbbk \) . The 2-part \(C_{\Bbbk ,2} \) of the class group of \(\Bbbk \) is of type (2, 2, 2), so \(\Bbbk _2^{(1)} \) contains seven unramified quadratic extensions \(\mathbb{K}_j /\Bbbk \) and seven unramified biquadratic extensions \(\mathbb{L}_j /\Bbbk \) . Our goal is to determine the fourteen extensions, the group \(C_{\Bbbk ,2} \) and to study the capitulation problem of the 2-classes of \(\Bbbk \) .  相似文献   

19.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

20.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号