首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A truly fruitful way to construct finite generalized quadrangles is through the detection of Kantor families in the general 5-dimensional Heisenberg group over some finite field $\mathbb{F}_{q}$ . All these examples are so-called ??flock quadrangles??. Payne (Geom. Dedic. 32:93?C118, 1989) constructed from the Ganley flock quadrangles the new Roman quadrangles, which appeared not to arise from flocks, but still via a Kantor family construction (in some group of the same order as ). The fundamental question then arose as to whether (Payne in Geom. Dedic. 32:93?C118, 1989). Eventually the question was solved in Havas et?al. (Finite geometries, groups, and computation, pp.?95?C102, de Gruyter, Berlin, 2006; Adv. Geom. 26:389?C396, 2006). Payne??s Roman construction appears to be a special case of a far more general one: each flock quadrangle for which the dual is a translation generalized quadrangle gives rise to another generalized quadrangle which is in general not isomorphic, and which also arises from a Kantor family. Denote the class of such flock quadrangles by . In this paper, we resolve the question of Payne for the complete class . In fact we do more??we show that flock quadrangles are characterized by their groups. Several (sometimes surprising) by-products are described in both odd and even characteristic.  相似文献   

2.
An augmented Lagrangian approach for sparse principal component analysis   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–214, 1995; d’Aspremont et?al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont et?al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée et?al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et?al. in J Comput Graph Stat 12:531–547, 2003; Moghaddam et?al. in Advances in neural information processing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar Anal 99(6):1015–1034, 2008; Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006). Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic (Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression data (Chin et?al in Cancer Cell 10:529C–541C, 2006), respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.  相似文献   

3.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

4.
We use the Pieri and Giambelli formulas of Buch et al. (Invent Math 178:345–405, 2009; J Reine Angew, 2013) and the calculus of raising operators developed in Buch et al. (A Giambelli formula for isotropic Grassmannians, arXiv:0811.2781, 2008) and Tamvakis (J Reine Angew Math 652, 207–244, 2011) to prove a tableau formula for the eta polynomials of Buch et al. (J Reine Angew, 2013) and the Stanley symmetric functions which correspond to Grassmannian elements of the Weyl group $\widetilde{W}_n$ of type $\text {D}_n$ . We define the skew elements of $\widetilde{W}_n$ and exhibit a bijection between the set of reduced words for any skew $w\in \widetilde{W}_n$ and a set of certain standard typed tableaux on a skew shape $\lambda /\mu $ associated to $w$ .  相似文献   

5.
This article continues Ros?anowski and Shelah (Int J Math Math Sci 28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce here a new property of (<λ)-strategically complete forcing notions which implies that their λ-support iterations do not collapse λ + (for a strongly inaccessible cardinal λ).  相似文献   

6.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

7.
Tilting theory has been a very important tool in the classification of finite dimensional algebras of finite and tame representation type, as well as, in many other branches of mathematics. Happel (1988) and Cline et al. (J Algebra 304:397–409 1986) proved that generalized tilting induces derived equivalences between module categories, and tilting complexes were used by Rickard (J Lond Math Soc 39:436–456, 1989) to develop a general Morita theory of derived categories. On the other hand, functor categories were introduced in representation theory by Auslander (I Commun Algebra 1(3):177–268, 1974), Auslander (1971) and used in his proof of the first Brauer–Thrall conjecture (Auslander 1978) and later on, used systematically in his joint work with I. Reiten on stable equivalence (Auslander and Reiten, Adv Math 12(3):306–366, 1974), Auslander and Reiten (1973) and many other applications. Recently, functor categories were used in Martínez-Villa and Solberg (J Algebra 323(5):1369–1407, 2010) to study the Auslander–Reiten components of finite dimensional algebras. The aim of this paper is to extend tilting theory to arbitrary functor categories, having in mind applications to the functor category Mod (modΛ), with Λ a finite dimensional algebra.  相似文献   

8.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

9.
Martensen interpolation has been investigated in Dahmen et?al. (Numer Math 52:564–639, 1988), Delvos (2003), Martensen (Numer Math 21:70–80, 1973), Siewer (BIT Numer Math 46:127–140, 2006). In this paper we investigate bivariate constructions using Boolean methods (Delvos and Schempp, Boolean methods in interpolation and approximations. Pitman research notes in mathematical series. Wiley, New York, 1989).  相似文献   

10.
Groups that are FC, or more generally satisfy any of the weakenings of the FC-condition considered in de Giovanni (Serdica Math. J. 28:241?C254, 2002) and Robinson et?al. (J. Algebra 326:218?C226, 2011), have local systems consisting of normal finite-by-nilpotent subgroups. Apart from generalizing results from de Giovanni (Serdica Math. J. 28:241?C254, 2002) and Robinson et al. (J. Algebra 326:218?C226, 2011) to the more general context of locally (normal and finite-by-nilpotent) groups, we partially settle an open problem raised in Robinson et?al. (J. Algebra 326:218?C226, 2011) concerning the isomorphism of maximal p-subgroups, but in this more general setting of locally (normal and finite-by-nilpotent) groups.  相似文献   

11.
In [10] (C R Acad Sci Paris Ser I Math 323(2) 117–120, 1996), [11] (Math Res Lett 10(1):71–83 2003), [12] (Can J Math 57(6):1215–1223 2005), Khare showed that any strictly compatible systems of semisimple abelian mod p Galois representations of a number field arises from a unique finite set of algebraic Hecke characters. In this article, we consider a similar problem for arbitrary global fields. We give a definition of Hecke character which in the function field setting is more general than previous definitions by Goss and Gross and define a corresponding notion of compatible system of mod p Galois representations. In this context we present a unified proof of the analog of Khare’s result for arbitrary global fields. In a sequel we shall apply this result to strictly compatible systems arising from Drinfeld modular forms, and thereby attach Hecke characters to cuspidal Drinfeld Hecke eigenforms.  相似文献   

12.
In (Andrei, Comput. Optim. Appl. 38:402?C416, 2007), the efficient scaled conjugate gradient algorithm SCALCG is proposed for solving unconstrained optimization problems. However, due to a wrong inequality used in (Andrei, Comput. Optim. Appl. 38:402?C416, 2007) to show the sufficient descent property for the search directions of SCALCG, the proof of Theorem?2, the global convergence theorem of SCALCG, is incorrect. Here, in order to complete the proof of Theorem?2 in (Andrei, Comput. Optim. Appl. 38:402?C416, 2007), we show that the search directions of SCALCG satisfy the sufficient descent condition. It is remarkable that the convergence analyses in (Andrei, Optim. Methods Softw. 22:561?C571, 2007; Eur. J. Oper. Res. 204:410?C420, 2010) should be revised similarly.  相似文献   

13.
Polynomials and exponential polynomials play a fundamental role in the theory of spectral analysis and spectral synthesis on commutative groups. Recently several new results have been published in this field [24,6]. Spectral analysis and spectral synthesis has been studied on some types of commutative hypergroups, as well. However, a satisfactory definition of exponential monomials on general commutative hypergroups has not been available so far. In [5,7,8] and [9], the authors use a special concept on polynomial and Sturm–Liouville-hypergroups. Here we give a general definition which covers the known special cases.  相似文献   

14.
In this paper, we study some properties related to the new characterizations of Sobolev spaces introduced in Bourgain and Nguyen (C R Acad Sci, 343:75?C80, [2006]), Nguyen (J Funct Anal 237: 689?C720, [2006]; J Eur Math Soc 10:191?C229, [2008]). More precisely, we establish variants of the Poincaré inequality, the Sobolev inequality, and the Rellich?CKondrachov compactness theorem, where ${\int_{\mathbb{R}^N} |\nabla g|^p \;dx}$ is replaced by some quantity of the type $$I_{\delta} (g) =\mathop{\int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N}}_{|g(x) - g(y)| > \delta}\frac{\delta^p}{|x-y|^{N+p}}\, dx \, dy.$$   相似文献   

15.
Following Müller and Pflug (Insur Math Econ 28:381?C392, 2001) and Nyrhinen (Adv Appl Probab 30:1008?C1026, 1998; J Appl Probab 36:733?C746, 1999), we study the adjustment coefficient of ruin theory in a context of temporal dependency. We provide a consistent estimator for this coefficient, and perform some simulations.  相似文献   

16.
John Holte (Am. Math. Mon. 104:138?C149, 1997) introduced a family of ??amazing matrices?? which give the transition probabilities of ??carries?? when adding a list of numbers. It was subsequently shown that these same matrices arise in the combinatorics of the Veronese embedding of commutative algebra (Brenti and Welker, Adv. Appl. Math. 42:545?C556, 2009; Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009) and in the analysis of riffle shuffling (Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009). We find that the left eigenvectors of these matrices form the Foulkes character table of the symmetric group and the right eigenvectors are the Eulerian idempotents introduced by Loday (Cyclic Homology, 1992) in work on Hochschild homology. The connections give new closed formulae for Foulkes characters and allow explicit computation of natural correlation functions in the original carries problem.  相似文献   

17.
We apply the discrete version of Calderón??s reproducing formula and Littlewood?CPaley theory with weights to establish the $H^{p}_{w} \to H^{p}_{w}$ (0<p<??) and $H^{p}_{w}\to L^{p}_{w}$ (0<p??1) boundedness for singular integral operators and derive some explicit bounds for the operator norms of singular integrals acting on these weighted Hardy spaces when we only assume w??A ??. The bounds will be expressed in terms of the A q constant of w if q>q w =inf?{s:w??A s }. Our results can be regarded as a natural extension of the results about the growth of the A p constant of singular integral operators on classical weighted Lebesgue spaces $L^{p}_{w}$ in Hytonen et al. (arXiv:1006.2530, 2010; arXiv:0911.0713, 2009), Lerner (Ill.?J.?Math. 52:653?C666, 2008; Proc. Am. Math. Soc. 136(8):2829?C2833, 2008), Lerner et?al. (Int.?Math. Res. Notes 2008:rnm 126, 2008; Math. Res. Lett. 16:149?C156, 2009), Lacey et?al. (arXiv:0905.3839v2, 2009; arXiv:0906.1941, 2009), Petermichl (Am. J. Math. 129(5):1355?C1375, 2007; Proc. Am. Math. Soc. 136(4):1237?C1249, 2008), and Petermichl and Volberg (Duke Math. J. 112(2):281?C305, 2002). Our main result is stated in Theorem?1.1. Our method avoids the atomic decomposition which was usually used in proving boundedness of singular integral operators on Hardy spaces.  相似文献   

18.
Inspired by the monograph of Larsen/McCarthy, [26], in [10] and [11] the author started a series of articles concerning abstract multiplicative ideal theory along the problem lines of [26]. In this paper we turn to multiplicative lattices having the left Priifer property, that is to m-lattices satisfying the implication a1 + … + an ? B ? a1 +… + an ¦? B or even the multiplication property A ? B ? A ¦B, respectively. Clearly, studying such structures includes studying substructures of d-semigroups.  相似文献   

19.
For a computable structure \({\mathcal{A}}\) , there may not be a computable infinitary Scott sentence. When there is a computable infinitary Scott sentence \({\varphi}\) , then the complexity of the index set \({I(\mathcal{A})}\) is bounded by that of \({\varphi}\) . There are results (Ash and Knight in Computable structures and the hyperarithmetical hierarchy. Elsevier, Amsterdam, 2000; Calvert et al. in Algeb Log 45:306–315, 2006; Carson et al. in Trans Am Math Soc 364:5715–5728, 2012; McCoy and Wallbaum in Trans Am Math Soc 364:5729–5734, 2012; Knight and Saraph in Scott sentences for certain groups, pre-print) giving “optimal” Scott sentences for structures of various familiar kinds. These results have been driven by the thesis that the complexity of the index set should match that of an optimal Scott sentence (Ash and Knight in Computable structures and the hyperarithmetical hierarchy. Elsevier, Amsterdam, 2000; Calvert et al. in Algeb Log 45:306–315, 2006; Carson et al. in Trans Am Math Soc 364:5715–5728, 2012; McCoy and Wallbaum in Trans Am Math Soc 364:5729–5734, 2012). In this note, it is shown that the thesis does not always hold. For a certain subgroup of \({\mathbb{Q}}\) , there is no computable d- \({\Sigma_2}\) Scott sentence, even though (as shown in Ash and Knight in Scott sentences for certain groups, pre-print) the index set is d- \({\Sigma^0_2}\) .  相似文献   

20.
We define the Hall algebra associated to any triangulated category under some finiteness conditions with odd periodic translation functor T. This generalizes the results in Toën (Duke Math J 135(3):587–615, 2006) and Xiao and Xu (Duke Math J 143(2):357–373, 2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号