首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

2.
In this paper, we show that an n-dimensional connected non-compact Ricci soliton isometrically immersed in the flat complex space form ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle )}$ , with potential vector field of the Ricci soliton is the characteristic vector field of the real hypersurface is an Einstein manifold. We classify connected Hopf hypersurfaces in the flat complex space form ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle )}$ and also obtain a characterization for the Hopf hypersurfaces in ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle ) }$ .  相似文献   

3.
Let t be a fixed parameter and x some indeterminate. We give some properties of the generalized binomial coefficients $\genfrac{\langle }{\rangle}{0pt}{}{x}{k}$ inductively defined by $k/x \genfrac{\langle}{\rangle}{0pt}{}{x}{k}= t\genfrac{\langle}{\rangle}{0pt}{}{x-1}{k-1} +(1-t)\genfrac{\langle}{\rangle}{0pt}{}{x-2}{k-2}$ .  相似文献   

4.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

5.
Let M be a compact orientable n-dimensional hypersurface, with nowhere vanishing mean curvature H, immersed in a Riemannian spin manifold ${\overline{M}}$ admitting a non trivial parallel spinor field. Then the first eigenvalue ${\lambda_1(D_{M}^{H})}$ (with the lowest absolute value) of the Dirac operator ${D_{M}^{H}}$ corresponding to the conformal metric ${\langle\;,\;\rangle^{H}=H^{2}\,\langle\;,\;\rangle}$ , where ${\langle\;,\;\rangle}$ is the induced metric on M, satisfies ${\left|\lambda_1(D_{M}^{H})\right|\le \frac{n}{2}}$ . By applying the Bourguignon-Gauduchon first variational formula, we obtain a necessary condition for ${\left|\lambda_1(D_{M}^{H})\right|=\frac{n}{2}}$ . As a consequence, we prove that round hyperspheres are the only hypersurfaces of the Euclidean space satisfying the equality in the Bär inequality $$\lambda_1(D_{M})^{2}\le \frac{n^{2}}{4{vol}(M)}\int_{M} H^{2}\, dV,$$ where D M stands now for the Dirac operator of the induced metric.  相似文献   

6.
Let K be a field, $\mathcal {O}_v$ a valuation ring of K associated to a valuation v: K → Γ?∪?{?∞?}, and m v the unique maximal ideal of $\mathcal {O}_v$ . Consider an ideal $\mathcal {I}$ of the free K-algebra $K\langle X\rangle =K\langle X_1,...,X_n\rangle$ on X 1,...,X n . If ${\cal I}$ is generated by a subset $\mathcal {G}\subset{\cal O}_v\langle X\rangle$ which is a monic Gr?bner basis of ${\cal I}$ in $K\langle X\rangle$ , where $\mathcal {O}_v\langle X\rangle =\mathcal{O}_v\langle X_1,...,X_n\rangle$ is the free $\mathcal{O}_v$ -algebra on X 1,...,X n , then the valuation v induces naturally an exhaustive and separated Γ-filtration F v A for the K-algebra $A=K\langle X\rangle /\mathcal {I}$ , and moreover $\mathcal{I}\cap\mathcal{O}_v\langle X\rangle =\langle\mathcal{G}\rangle$ holds in $\mathcal{O}_v\langle X\rangle$ ; it follows that, if furthermore $\mathcal{G}\not\subset {\bf m}_v{O}_v\langle X\rangle$ and $k\langle X\rangle /\langle\overline{\mathcal G}\rangle$ is a domain, where $k=\mathcal{O}_v/{\bf m}_v$ is the residue field of $\mathcal{O}_v$ , $k\langle X\rangle =k\langle X_1,...,X_n\rangle$ is the free k-algebra on X 1,...,X n , and $\overline{\mathcal G}$ is the image of $\mathcal{G}$ under the canonical epimorphism $\mathcal{O}_v\langle X\rangle\rightarrow k\langle X\rangle$ , then F v A determines a valuation function A → Γ?∪?{?∞?}, and thereby v extends naturally to a valuation function on the (skew-)field Δ of fractions of A provided Δ exists.  相似文献   

7.
We prove that the strong polarized relation ${\left(\begin{array}{ll} 2^\mu\\ \mu \end{array}\right)\rightarrow \left(\begin{array}{ll} 2^\mu\\ \mu \end{array}\right)^{1,1}_2}$ is consistent with ZFC. We show this for ${\mu = \aleph _0}$ , and for every supercompact cardinal???. We also characterize the polarized relation below the splitting number.  相似文献   

8.
Given three mutually tangent circles with bends (related to the reciprocal of the radius) a, b and c respectively, an important quantity associated with the triple is the value ${\langle a,b,c \rangle:=ab+ac+bc}$ . In this note we show in the case when a central circle with bend b 0 is “surrounded” by four circles, i.e., a flower with four petals, with bends b 1, b 2, b 3,b 4 that either $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ or $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ (where ${\langle b_{0},b_{1},b_{2} \rangle}$ is chosen to be maximal). As an application we give a sufficient condition for the alternating sum of the ${\sqrt{\langle a,b,c\rangle}}$ of a packing in standard position to be 0. (A packing is in standard position when we have two circles with bend 0, i.e., parallel lines, and the remaining circles are packed in between.)  相似文献   

9.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

10.
Let $\mathrm{A }$ be a finitely generated semigroup with 0. An $\mathrm{A }$ -module over $\mathbb F _1$ (also called an $\mathrm{A }$ -set), is a pointed set $(M,*)$ together with an action of $\mathrm{A }$ . We define and study the Hall algebra $\mathbb H _{\mathrm{A }}$ of the category $\mathcal C _{\mathrm{A }}$ of finite $\mathrm{A }$ -modules. $\mathbb H _{\mathrm{A }}$ is shown to be the universal enveloping algebra of a Lie algebra $\mathfrak n _{\mathrm{A }}$ , called the Hall Lie algebra of $\mathcal C _{\mathrm{A }}$ . In the case of $\langle t \rangle $ —the free monoid on one generator $\langle t \rangle $ , the Hall algebra (or more precisely the Hall algebra of the subcategory of nilpotent $\langle t \rangle $ -modules) is isomorphic to Kreimer’s Hopf algebra of rooted forests. This perspective allows us to define two new commutative operations on rooted forests. We also consider the examples when $\mathrm{A }$ is a quotient of $\langle t \rangle $ by a congruence, and the monoid $G \cup \{ 0\}$ for a finite group $G$ .  相似文献   

11.
We consider the following prescribed curvature problem for polyharmonic operator: $$\left\{\begin{array}{llll} D_{m} u = \tilde{K}(y)|u|^{m^*-2}u\; {\rm in}\; \mathbb{S}^N\\ u \quad\; >0\qquad\quad\quad\quad\quad{\rm on}\; \mathbb{S}^N\\ u \quad\; \in H^{m}(\mathbb{S}^N), \end{array} \right.$$ where ${m^*=\frac{2N}{N-2m}, N\geq 2m+1,m \in \mathbb{N}_{+}, \tilde{K}}$ is positive and rationally symmetric, ${\mathbb{S}^N}$ is the unit sphere with the induced Riemannian metric ${g=g_{\mathbb{S}^N},}$ and D m is the elliptic differential operator of 2m order given by $$\begin{array}{lll}D_m={\prod\limits_{k=1}^m}{\left(-\Delta_g+\frac{1}{4}(N-2k)(N+2k-2)\right)}\end{array}$$ where Δ g is the Laplace-Beltrami operator on ${\mathbb{S}^N}$ . We will show that problem (P) has infinitely many non-radial positive solutions, whose energy can be arbitrary large.  相似文献   

12.
13.
14.
Let $\mathbb{K}$ be a finite extension of a characteristic zero field $\mathbb{F}$ . We say that a pair of n × n matrices (A,B) over $\mathbb{F}$ represents $\mathbb{K}$ if $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle B \right\rangle }}} \right. \kern-0em} {\left\langle B \right\rangle }}$ , where $\mathbb{F}\left[ A \right]$ denotes the subalgebra of $\mathbb{M}_n \left( \mathbb{F} \right)$ containing A and 〈B〉 is an ideal in $\mathbb{F}\left[ A \right]$ , generated by B. In particular, A is said to represent the field $\mathbb{K}$ if there exists an irreducible polynomial $q\left( x \right) \in \mathbb{F}\left[ x \right]$ which divides the minimal polynomial of A and $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle {q\left( A \right)} \right\rangle }}} \right. \kern-0em} {\left\langle {q\left( A \right)} \right\rangle }}$ . In this paper, we identify the smallest order circulant matrix representation for any subfield of a cyclotomic field. Furthermore, if p is a prime and $\mathbb{K}$ is a subfield of the p-th cyclotomic field, then we obtain a zero-one circulant matrix A of size p × p such that (A, J) represents $\mathbb{K}$ , where J is the matrix with all entries 1. In case, the integer n has at most two distinct prime factors, we find the smallest order 0, 1-companion matrix that represents the n-th cyclotomic field. We also find bounds on the size of such companion matrices when n has more than two prime factors.  相似文献   

15.
16.
If ${\mathfrak X}$ is a class of groups, Delizia et?al. (Bull Austral Math Soc 75:313–320, 2007) call a group G ${\mathfrak X}$ -transitive (or an ${\mathfrak XT}$ -group) if whenever ${\langle a,b\rangle}$ and ${\langle b,c\rangle}$ are in ${\mathfrak X} \langle a,c\rangle$ is also in ${\mathfrak X}$ ( ${a,b,c\in G}$ ). The structure of ${\mathfrak XT}$ -groups has been investigated for a number of classes of groups, by Delizia, Moravec and Nicotera and others. A graph can be associated with a group in many ways. Delizia, Moravec and Nicotera introduce a graph which is a generalisation of the commuting graph of a group, but do not make use of the graph. We will use the properties of the graph to investigate further classes of groups and to obtain more detailed structural information.  相似文献   

17.
In this paper we establish some parabolicity criteria for maximal surfaces immersed into a Lorentzian product space of the form ${M^2 \times \mathbb {R}_1}$ , where M 2 is a connected Riemannian surface with non-negative Gaussian curvature and ${M^2 \times \mathbb {R}_1}$ is endowed with the Lorentzian product metric ${{\langle , \rangle}={\langle , \rangle}_M-dt^2}$ . In particular, and as an application of our main result, we deduce that every maximal graph over a starlike domain ${\Omega \subseteq M}$ is parabolic. This allows us to give an alternative proof of the non-parametric version of the Calabi–Bernstein result for entire maximal graphs in ${M^2 \times \mathbb {R}_1}$ .  相似文献   

18.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

19.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

20.
Romain Tessera 《Positivity》2012,16(4):633-640
We study the L p -distortion of finite quotients of amenable groups. In particular, for every ${2\leq p < \infty}$ , we prove that the ? p -distortions of the groups ${C_2\wr C_n}$ and ${C_{2^n}\rtimes C_n}$ are in ${\Theta((\log n)^{1/p}),}$ and that the ? p -distortion of ${C_n^2 \rtimes_A \mathbf{Z}}$ , where A is the matrix ${{\left({\small\begin{array}{cc}2 & 1 \\ 1 & 1 \end{array}} \right)}}$ is in ${\Theta((\log \log n)^{1/p}).}$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号