首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a numerical technique employing the density of partition function zeroes (i) to distinguish between phase transitions of first and higher order, (ii) to examine the crossover between such phase transitions and (iii) to measure the strength of first and second order phase transitions in the form of latent heat and critical exponents. These techniques are demonstrated in applications to a number of models for which zeroes are available.  相似文献   

2.
We investigate a percolation process where an additional parameter q is used to interpolate between the classical Erd¨os–R′enyi(ER) network model and the smallest cluster(SC) model. This model becomes the ER network at q = 1, which is characterized by a robust second order phase transition. When q = 0, this model recovers to the SC model which exhibits a first order phase transition. To study how the percolation phase transition changes from second order to first order with the decrease of the value of q from 1 to 0, the numerical simulations study the final vanishing moment of the each existing cluster except the N-cluster in the percolation process. For the continuous phase transition,it is shown that the tail of the graph of the final vanishing moment has the characteristic of the convexity. While for the discontinuous phase transition, the graph of the final vanishing moment possesses the characteristic of the concavity.Just before the critical point, it is found that the ratio between the maximum of the sequential vanishing clusters sizes and the network size N can be used to decide the phase transition type. We show that when the ratio is larger than or equal to zero in the thermodynamic limit, the percolation phase transition is first or second order respectively. For our model, the numerical simulations indicate that there exists a tricritical point qcwhich is estimated to be between0.2 qc 0.25 separating the two phase transition types.  相似文献   

3.
在推广的Ginzburg-Landau理论框架内,解析地研究了在QGP转化为强子的相变过程中多重数差关联矩Fq与相空间间隔δ的依赖关系,提出了一种在实验中判断QGP相变级次的可能方法.此方法的特点在于它不依赖系统温度这个未知的参量,对于低维和高维的实验数据均可以得出相同的相变信息.  相似文献   

4.
The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form “Does the pool contain at least a defective?”. The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in different fields including molecular biology and computer science. Here we study GT in the probabilistic setting focusing on the regime of small defective probability and large number of objects, p→0 and N→∞. We construct and analyze one-stage algorithms for which we establish the occurrence of a non-detection/detection phase transition resulting in a sharp threshold, \(\overline{M}\), for the number of tests. By optimizing the pool design we construct algorithms whose detection threshold follows the optimal scaling \(\overline{M}\propto Np|\log p|\). Then we consider two-stages algorithms and analyze their performance for different choices of the first stage pools. In particular, via a proper random choice of the pools, we construct algorithms which attain the optimal value (previously determined in (Mézard and Toninelli, arXiv:0706.3104)) for the mean number of tests required for complete detection. We finally discuss the optimal pool design in the case of finite p.  相似文献   

5.
In recent years, there has been a surge of interest in exploring coherence measures and correlation measures to characterize topological quantum phase transitions (TQPTs). Here, motivated by the continued push in this direction, the steered quantum coherence (SQC) in the extended XY model is studied to analyze its capability in characterizing TQPTs. It is shown that the first derivative of SQC succeeds in signaling different critical points of TQPTs. In particular, it is found that the SQC is a long-range correlation and the first derivative of SQC can always accurately identify TQPTs for different site distance.  相似文献   

6.
In the frame of operator-algebraic quantum statistical mechanics we calculate the grand canonical equilibrium states of a bipartite, microscopic mean-field model for bipolaronic superconductors (or anisotropic antiferromagnetic materials in the quasispin formulation). Depending on temperature and chemical potential, the sets of statistical equilibrium states exhibit four qualitatively different regions, describing the normal, superconducting (spin-flopped), charge ordered (antiferromagnetic), and coexistence phases. Besides phase transitions of the second kind, the model also shows phase transitions of the first kind between the superconducting and the charge ordered phases. A unique limiting Gibbs state is found in its central decomposition for all temperatures, even in the coexistence region, if the thermodynamic limit is performed at fixed particle density (magnetization).  相似文献   

7.
The relation between thermodynamic phase transitions in classical systems and topological changes in their configuration space is discussed for two physical models and contains the first exact analytic computation of a topologic invariant (the Euler characteristic) of certain submanifolds in the configuration space of two physical models. The models are the mean-field XY model and the one-dimensional XY model with nearest-neighbor interactions. The former model undergoes a second-order phase transition at a finite critical temperature while the latter has no phase transitions. The computation of this topologic invariant is performed within the framework of Morse theory. In both models topology changes in configuration space are present as the potential energy is varied; however, in the mean-field model there is a particularly strong topology change, corresponding to a big jump in the Euler characteristic, connected with the phase transition, which is absent in the one-dimensional model with no phase transition. The comparison between the two models has two major consequences: (i) it lends new and strong support to a recently proposed topological approach to the study of phase transitions; (ii) it allows us to conjecture which particular topology changes could entail a phase transition in general. We also discuss a simplified illustrative model of the topology changes connected to phase transitions using of two-dimensional surfaces, and a possible direct connection between topological invariants and thermodynamic quantities.  相似文献   

8.
The paper reviews the development of theory and experiments concerning the nature of the critical point in ionic fluids. Because of the long‐range nature of the Coulomb interactions the possibility of mean‐field critical behaviour was discussed as a possibility. Although some experiments supported mean‐field criticality, simulations on the model fluid of charged hard spheres and later experiments on ionic solutions have shown that phase transition of ionic systems belong to the Ising universality class like phase transitions in non‐ionic fluids. Experiments concerning the crossover from Ising to mean field‐behaviour are discussed as well as systematic differences between the phase behaviour predicted for the model fluid of charged hard spheres and that observed in ionic solutions (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
By critical analyses of the order parameter of symmetry breaking, we have researched the phase transitionsat high density in D = 2 and D = 3 Gross-Neveu (GN) model and shown that the gap equation obeyed by the dynamicalfermion mass has the same effectivenesss as the effective potentials for such analyses of all the second order and somespecial first order phase transitions. In the meantime we also further ironed out a theoretical divergence and proventhat in D = 3 GN model a first order phase transition does occur in the case of zero temperature and finite chemicalpotential.  相似文献   

10.
By critical analyses of the order parameter of symmetry breaking, we have researched the phase transitions at high density in D = 2 and D = 3 Gross-Neveu (GN) model and shown that the gap equation obeyed by the dynamical fermion mass has the same effectivenesss as the effective potentials for such analyses of all the second order and some specJal first order phase transitions. In the meantime we also further ironed out a theoretical divergence and proven that in D = 3 GN model a first order phase transition does occur in the case of zero temperature and finite chemical potential.  相似文献   

11.
应用内可逆卡诺循环的方法,导出了各种物质在临界点附近可逆与不可逆二级相变普遍适用的比热跃变公式以及广义的受伦菲斯特方程。对简单(P,V,T)系统、超导、电介质顺电一铁电二级相变进行了应用讨论。  相似文献   

12.
The dynamic phase transition has been studied, within a mean-field approach, in the kinetic spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic pair interactions in the presence of a time dependent oscillating magnetic field by using the Glauber-type stochastic dynamics. The nature (first- or second-order) of the transition is characterized by investigating the behavior of the thermal variation of the dynamic order parameters and as well as by using the Liapunov exponents. The dynamic phase transitions (DPTs) are obtained and the phase diagrams are constructed in the temperature and magnetic field amplitude plane and found nine fundamental types of phase diagrams. Phase diagrams exhibit one, two or three dynamic tricritical points, and besides a disordered (D) and the ferromagnetic-3/2 (F3/2) phases, six coexistence phase regions, namely F 3/2+ F 1/2, F 3/2+ D, F 3/2+ F 1/2+ FQ, F 3/2+ FQ, F 3/2+ FQ + D and FQ + D, exist in which depending on the biquadratic interaction. PACS number(s): 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk  相似文献   

13.
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of the atomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that the critical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.  相似文献   

14.
We consider a class of spin systems on ℤ d with vector valued spins (S x ) that interact via the pair-potentials J x,y S x S y . The interactions are generally spread-out in the sense that the J x,y 's exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d≥3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d = 1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique “state,” then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.  相似文献   

15.
We prove the existence of spontaneous magnetization at sufficiently low temperature, and hence of a phase transition, in a variety of quantum spin systems in three or more dimensions. The isotropic spin 1/2x-y model and the Heisenberg antiferromagnet with spin 1, 3/2,...and with nearest neighbor interactions on a simple cubic lattice are included.Research supported by U.S. National Science Foundation under grants GP-40768X (F.J.D.), MCS 75-21684 (E.H.L.), and GP-39048 (B.S.).Alfred Sloan Fellow.  相似文献   

16.
A general research on chiral symmetry restoring phase transitions at zero temperature and finite chemical potentials under electrical neutrality condition has been conducted in a Nambu-Jona-Lasinio model to describe twoflavor normal quark matter. Depending on whether mo/A, the ratio of dynamical quark mass in vacuum and the 3D momentum cutoff in the loop integrals, is less or greater than 0.413, the phase transition will be of the second or first order. A complete phase diagram of u quark chemical potential versus mo is given. With the electrical neutrality constraint, the region where the second order phase transition happens will be wider than the one without electrical neutrality limitation. The results also show that, for the value of m0/∧ from QCD phenomenology, the phase transition must be of the first order.  相似文献   

17.
High density phase transitions in a 4-dimensional Nambu-Jona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamicalfermion mass m(0) at zero temperature, is less than 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.  相似文献   

18.
High density phase transitions in a 4-dimensional Nambu-dona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamical fermion mass m(0) at zero temperature, is lessthan 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.  相似文献   

19.
Using the framework of modern continuum thermomechanics, we develop sharp- and diffuse-interface theories for coherent solid-state phase transitions. These theories account for atomic diffusion and for deformation. Of essential importance in our formulation of the sharp-interface theory are a system of configurational forces and an associated configurational force balance. These forces, which are distinct from standard Newtonian forces, describe the intrinsic material structure of a body. The configurational balance, when restricted to the interface, leads to a generalization of the classical Gibbs–Thomson relation, a generalization that accounts for the orientation dependence of the interfacial energy density and also for a broad spectrum of dissipative transition kinetics. Our diffuse-interface theory involves nonstandard microforces and an associated microforce balance. These forces arise naturally from an interpretation of the atomic densities as macroscopic parameters that describe atomistic kinematics distinct from the motion of material particles. When supplemented by thermodynamically consistent constitutive relations, the microforce balance yields a generalization of the Cahn–Hilliard relation giving the chemical potentials as variational derivatives of the total free energy with respect to the atomic densities. A formal asymptotic analysis (thickness of the transition layer approaching zero) demonstrates the correspondence between versions of our theories specialized to the case of a single mobile species for situations in which the time scale for interface propagation is small compared to that for bulk diffusion. While the configurational force balance is redundant in the diffuse-interface theory, when integrated over the transition layer, the limit of this balance is the interfacial configurational force balance (i.e., generalized Gibbs–Thomson relation) of the sharp-interface theory.  相似文献   

20.
A one-dimensional model is studied with nearest neighbor interaction and certain forbidden configurations. In this model it is possible to investigate the phase transition even on the microcanonical level, and it turns out that phases can coexist under certain circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号