首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structural arrangements of the ternary metal borocarbides MB2C4 (M=Mg, Ca; La and Ce) are investigated using density-functional theory (DFT) calculations within the generalized gradient approximation (GGA). Results indicate that these compounds adopt a layered structure consisting of graphite-like B2C4 layers alternating with metal sheets. Within the hexagonal layers, the coloring with the -C-C-C-B-C-B- sequence is energetically more stable than that with the -C-C-C-C-B-B- one. The electronic structures of these compounds, mainly determined by the B2C4 sheets, can be rationalized with the simple valence electron distribution M2+[B2C4]2−xe, with the metals essentially acting as two-electron donors with respect to the boron-carbon network, the other x electrons remaining in the relatively narrow d and/or f bands of the metals. Accordingly, MB2C4 are narrow band-gap semiconductors (ΔE≈0.2-0.4 eV) with M=Mg and Ca. On the other hand, with M=La and Ce, the compounds are conducting with a relatively high density of states at the Fermi level predominantly metal in character with substantial B/Cπ* antibonding state admixture.  相似文献   

2.
Dissolution rates of NiO, CoO, ZnO, α-Fe2O3 and the corresponding ferrites in 0.1 mol dm−3 oxalic acid at pH 3.5 were measured at 70 °C. The dissolution of simple oxides proceeds through the formation of surface metal oxalate complexes, followed by the transfer of surface complexes (rate-determining step). At constant pH, oxalate concentration and temperature, the trend in the first-order rate constant for the transfer of the surface complexes (kMe; Me=Ni, Co, Zn, Fe) parallels that of water exchange in the dissolved metal ions (k−w). Thus, the most important factor determining the rates of dissolution of metal oxides is the lability of Me-O bonds, which is in turn defined by the electronic structure of the metal ion and its charge/radius ratio. UV (384 nm) irradiation does not increase significantly the dissolution rates of NiO, CoO and ZnO, whereas hematite is highly sensitive to UV light. For ferrites, the reactivity order is ZnFe2O4>CoFe2O4?NiFe2O4. Dissolution is congruent, with rates intermediate between those of the constituent oxides, Fe2O3 and MO (M=Co, Ni, Zn), reflecting the behavior of very thin leached layers with little Zn and Co, but appreciable amounts of Ni. The more robust Ni2+ labilizes less the corresponding ferrite. The correlation between log kM and log k−w is somewhat blurred and displaced to lower kM values. Fe(II), either photogenerated or added as salt, enhances the rate of Fe(III) phase transfer. A simple reaction mechanism is used to interpret the data.  相似文献   

3.
Various layered double hydroxides (LDHs) consisting of magnesium and a trivalent metal (Al, Ga or In) in an Mg/M(III) ratio of 3 were prepared by precipitation from the corresponding nitrates and also from magnesium ethoxide and the acetylacetonates of the trivalent metals using the sol-gel method. The six LDHs thus obtained were calcined at 500°C. All solids were characterized by XRD and IR spectroscopy prior to and after calcination. Their textural properties were determined from nitrogen adsorption measurements and their surface chemical properties by CO2 chemisorption.  相似文献   

4.
The crystal structures of M+VO3(M+ = K, NH4, and Cs) have been refined using three-dimensional counter-diffractometer X-ray data and full-matrix least-squares methods. The structure of these compounds is characterized by a (V5+O2?3)? chain extending along the c-axis (Pbcm orientation), with adjacent chains linked by the alkali metal cation. The structure may be considered as a variant of the pyroxene structure, and standard atom nomenclature is proposed in order to facilitate comparison with silicate pyroxenes. Structural variation across this series is discussed in detail and is compared with the analogous M+M3+Si2O6 (M+ = Li, Na; M3+ = Al, Cr, Fe, Sc, In) series.  相似文献   

5.
Two members of MIII2BP3O12 borophosphates, namely Fe2BP3O12 and In2BP3O12, were synthesized by the solid-state method and characterized by the X-ray single crystal diffraction, the powder diffraction and the electron microscopy. They both crystallize in the hexagonal system, space group P6(3)/m (no. 176) and feature 3D architectures, build up of the M2O9 units and B(PO4)3 groups via sharing the corners; however, they are not isomorphic for the different crystallographically distinct atomic positions. Optical property measurements of both compounds and magnetic susceptibility measurements of Fe2BP3O12 also have been performed. Moreover, in order to gain further insights into the relationship between physical properties and band structure of the MIII2BP3O12 borophosphates, theoretical calculations based on density functional theory (DFT) were performed using the total-energy code CASTEP.  相似文献   

6.
Different polymorphs of MRe2O6 (MFe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ∼1573 K, tetragonal rutile-type structures (P42/mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re2O10-pairs were found for CoRe2O6 and NiRe2O6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re+4/Re+6 and M2+/M3+ is present in both structural modifications of CoRe2O6 and NiRe2O6. The low-temperature forms contain more Re+4 and M3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe2O6 order with a ferromagnetic component at ∼24 K, whereas tetragonal and orthorhombic CoRe2O6 show two magnetic transitions: below ∼17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe2O6 is antiferromagnetic below 123 K.  相似文献   

7.
The compounds CeMIn5 (M=Co, Rh, Ir) have been shown to exhibit heavy fermion behavior. In order to better understand this effect and the nature of the observed superconductivity, we have synthesized and characterized the non-magnetic analogs, LaMIn5 (M=Co, Rh, Ir). The structures of LaCoIn5, LaRhIn5, and LaIrIn5 were determined by single-crystal X-ray diffraction. CeMIn5 and LaMIn5 compounds are isostructural and adopt a tetragonal structure with space group P4/mmm, Z=1. Lattice parameters are a=4.6399(4) and c=7.6151(6) Å for LaCoIn5, a=4.6768(3) and c=7.5988(7) Å for LaRhIn5, and a=4.6897(6) and c=7.5788(12) Å for LaIrIn5. We compare these experimental data with band structure computations and examine structural trends that affect the magnetic and transport properties of these compounds.  相似文献   

8.
The synthesis, structure and properties of molecular conductors based on M(dddt)2 cation complexes (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) which are metal complex analogs of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) salts are considered. Formally, the central C=C bond of ET is substituted by a metal ion in the M(dddt)2 complexes. The effect of metal (M=Ni, Pt, Pd) and counterion on crystal structure and conducting properties of M(dddt)2 complexes is analyzed. The similarity and distinction in structures and properties of M(dddt)2 and ET salts are discussed.  相似文献   

9.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

10.
In general, the reduction of Eu3+ to Eu2+ in solids needs an annealing process in a reducing atmosphere. In this paper, it is of great interest and importance to find that the reduction of Eu3+ to Eu2+ can be realized in a series of alkaline-earth metal aluminum silicates MAl2Si2O8 (M=Ca, Sr, Ba) just in air condition. The Eu2+-doped MAl2Si2O8 (M=Ca, Sr, Ba) powder samples were prepared in air atmosphere by Pechini-type sol-gel process. It was found that the strong band emissions of 4f65d1-4f7 from Eu2+ were observed at 417, 404 and 373 nm in air-annealed CaAl2Si2O8, SrAl2Si2O8 and BaAl2Si2O8, respectively, under ultraviolet excitation although the Eu3+ precursors were employed. In addition, under low-voltage electron beam excitation, Eu2+-doped MAl2Si2O8 also shows strong blue or ultraviolet emission corresponding to 4f65d1-4f7 transition. The reduction mechanism from Eu3+ to Eu2+ in these compounds has been discussed in detail.  相似文献   

11.
The intermetallic compounds Sr11Bi10, Ba11Bi10, and (Sr5Ba6)Sb10 have been obtained from melts of mixtures of the elements. They crystallize in the tetragonal system, space group I4/mmm, Ho11Ge10 structure type, tI84 Pearson symbol, Z=4, with cell parameters a=12.765(3), 13.230(3), 12.748(2) Å and c=18.407(3), 19.365(3), 18.761(2) Å, respectively. The structures were solved from single-crystal X-ray data and refined by full-matrix least-squares to R1=6.71, 5.44, and 5.73%. The structure of M11X10 contains three discrete anionic moieties: square rings X4−4, dumbbells X4−2, and isolated X3−. Using formal charges the unit cell of M11X10 may be described as containing 44 M2+, 2X4−4, 8X4−2, and 16X3− ions. This structure is discussed in comparison with other Bi or Sb pnictide compounds. Bonding is analyzed therein using molecular orbital (EHMO) calculations for the anions (dumbbell and square units) and also the periodic tight-binding method. Lone pair repulsions inside and between the anionic units are evidenced; they are compensated by strong bonding cation-to-anion interactions. Interatomic distances along the series appear to be more dependent on packing than on electronic effects.  相似文献   

12.
New compounds MxTiSe2 have been prepared with M = Fe (x ? 0.66), M = Co or Ni (x ? 0.50). The metal M is located in vacant octahedral sites of the TiSe2 host lattice (hexagonal unit cell a′, c′). An ordering of vacancies occurs if x ? 0.20. With M = Co or Ni (x = 0.50) and with M = Fe (0.25 ? x ? 0.66) isotypic compounds of Ti3Se4 can be obtained (M3X4 type; monoclinic unit cell aa′ √3, ba′, c ≈ 2c′). The compounds Fe0.38TiSe2 and Co0.38TiSe2 (hexagonal unit cell aa′ √3, c ≈ 2c′) are of the M2X3 type, variety 2c′. The Fe0.25TiSe2 and Co0.25TiSe2 monoclinic unit cells (a ≈ 2a′ √3, b ≈ 2a′, c ≈ 2c′) allow us to assume, for these two compounds, a structure of the M53X8 type, variety 2c′, identical to the Ti5Se8 one. The compound Ni0.25TiSe2 has an hexagonal unit cell (a ≈ 2a′, c ≈ 3c′); it belongs to a so-called 3c′ variety of the M53X8 type.  相似文献   

13.
TiO2 nanotubes-supported MS (TiO2NTs@MS, M=Cd, Zn) are synthesized by a simple wet chemical method at room temperature. The products are characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis absorption spectrum and photoluminescence (PL) spectrum. Their optical and morphological properties indicate the interaction between the TiO2 nanotube and MS nanoparticle. The photocatalytic activities of the TiO2NTs@MS are evaluated upon the oxidation of methyl orange under UV light illumination. The results reveal that the photocatalytic efficiency of the nanocomposites strongly depends on the specific interaction between MS and support.  相似文献   

14.
The title compounds MxTa11−xGe8 (M=Ti, Zr, Hf) were prepared from the pure elements by arc-melting and subsequent induction heating at temperatures between 1200°C and 1400°C. X-ray powder diffraction studies of the samples were performed using the Guinier technique and the respective powder patterns were refined with a structure model based on the orthorhombic Cr11Ge8-structure type (oP76, Pnma). The homogeneity ranges of the compounds were determined to be 0.9<x<1.3 (M=Ti), 0.7<x<1.3 (M=Zr) and 0.7<x<2.4> (M=Hf) by means of electron probe microanalysis. Chemical bonding, electronic structure and site preferences are discussed based on extended Hückel calculations performed on hypothetical binary Ta11Ge8.  相似文献   

15.
Phase equilibria in the systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni, Co, Mn) and subsolidus phase relations in the systems Ag2MoO4-MO-MoO3 (M=Ca, Pb, Cd, Mn, Co, Ni) were investigated using XRD and thermal analysis. The systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni) belong to the simple eutectic type whereas in the systems Ag2MoO4-MMoO4 (M=Co, Mn) incongruently melting Ag2M2(MoO4)3 (M=Co, Mn) were formed. In the ternary oxide systems studied no other compounds were found. Low-temperature LT-Ag2Mn2(MoO4)3 reversibly converts into the high-temperature form of a similar structure at 450-500°C. The single crystals of Ag2Co2(MoO4)3 and LT-Ag2Mn2(MoO4)3 were grown and their structures determined (space group , Z=2; lattice parameters are a=6.989(1) Å, b=8.738(2) Å, c=10.295(2) Å, α=107.67(2)°, β=105.28(2)°, γ=103.87(2)° and a=7.093(1) Å, b=8.878(2) Å, c=10.415(2) Å, α=106.86(2)°, β=105.84(2)°, γ=103.77(2)°, respectively) and refined to R(F)=0.0313 and 0.0368, respectively. The both compounds are isotypical to Ag2Zn2(MoO4)3 and contain mixed frameworks of MoO4 tetrahedra and pairs of M2+O6 octahedra sharing common edges. The Ag+ ions are disordered and located in the voids forming infinite channels running along the a direction. The peculiarities of the silver disorder in the structures of Ag2M2(MoO4)3 (M=Zn, Mg, Co, Mn) are discussed as well as their relations with analogous sodium-containing compounds of the structural family of Na2Mg5(MoO4)6. The phase transitions in Ag2M2(MoO4)3 (M=Mg, Mn) of distortive or order-disorder type are suggested to have superionic character.  相似文献   

16.
A series of metalloborophosphates Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mg, Mn, Fe, Co, Ni, Cu, Zn) have been prepared hydrothermally and their structures have been solved by single-crystal diffraction techniques. They all crystallize in a hexagonal space group P63 and form a 3D microporous structure with 12-membered ring channels consisted of octahedral (MIIO6), tetrahedral (BO4, PO4) and triangular (BO2(OH)) units, in which the counter Na+ cations and water molecules are located. The Na+ cations are mobile and can be exchanged by Li+ in a melt of LiNO3. Their open frameworks are thermal stable up to about 500 °C. Completed solid solutions between two different transition metals can also be obtained. Magnetic properties of Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mn, Co, Ni, Cu) have been investigated.  相似文献   

17.
The systems M2MoO4-Fe2(MoO4)3 (M=Rb, Cs) were shown to be non-quasibinary joins of the systems M2O-Fe2O3-MoO3. New compounds M3FeMo4O15 were revealed along with the known MFe(MoO4)2 and M5Fe(MoO4)4. The unit cell parameters of the new compounds are a=11.6192(2), b=13.6801(3), c=9.7773(2) Å, β=92.964(1)°, space group P21/c, Z=4 (M=Rb) and a=11.5500(9), b=9.9929(7), c=14.513(1) Å, β=90.676(2)°, space group P21/n, Z=4 (M=Cs). In the structures of M3FeMo4O15 (M=Rb, Cs), a half of the FeO6 octahedra share two opposite edges with two MoO6 octahedra linked to other FeO6 octahedra through the bridged MoO4 tetrahedra by means of the common oxygen vertices to form the chains along the a axis. The difference between the structures is caused by diverse mutual arrangements of the adjacent polyhedral chains.  相似文献   

18.
We describe an investigation of the structure and dielectric properties of MM′O4 and MTiM′O6 rutile-type oxides for M=Cr, Fe, Ga and M′=Nb, Ta and Sb. All the oxides adopt a disordered rutile structure (P42/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies. While both the MM′O4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM′O6 oxides for M=Fe, Cr and M′=Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500 K.  相似文献   

19.
Using the first principles FLAPW-GGA method, comparative study of structural, electronic properties and of chemical bonding in four 1111-like chalcogenide oxides LaMChO (LaCuSO, LaCuSeO, LaAgSO, and LaAgSeO) with ZrCuSiAs-type structure was performed. Our studies showed that: (i) replacements of d metal atoms (Cu ↔ Ag) and chalcogen atoms (S ↔ Se) lead to anisotropic deformations of the crystal structure; this effect is related to strong anisotropy of inter-atomic bonds; (ii) all of the examined chalcogenide oxides are semiconducting; the band gap decreases both at S → Se and Cu → Ag substitutions; and (iii) the bonding in LaMChO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions, where mixed covalent-ionic bonds take place inside [La2O2] and [M2Ch2] blocks, whereas between the adjacent [La2O2]/[M2Ch2] blocks, ionic bonds emerge owing to [La2O2] → [M2Ch2] charge transfer. Since the near-Fermi bands of LaMChO phases originate mainly from electronic states of [M2Ch2] blocks, we speculate that chemical substitutions inside these blocks can result in striking differences in electronic properties of these systems; therefore, this approach can be promising for significant enlargement of the functional properties of these materials.  相似文献   

20.
Two new compounds were synthesized by heating mixtures of the elements at 975-1025 K and characterized by single-crystal X-ray methods. CaZn2Si2 (a=4.173(2) Å, c=10.576(5) Å) and EuZn2Ge2 (a=4.348(2) Å, c=10.589(9) Å) crystallize in the ThCr2Si2-type structure (space group I4/mmm; Z=2). Magnetic susceptibility measurements of EuZn2Ge2 show Curie-Weiss behavior with a magnetic moment of 7.85(5)μB/Eu and a paramagnetic Curie temperature of 10(1) K. EuZn2Ge2 orders antiferromagnetically at TN=10.0(5) K and undergoes a metamagnetic transition at a low critical field of about 0.3(2) T. The saturation magnetization at 2 K and 5.5 T is 6.60(5) μB/Eu. 151Eu Mössbauer spectroscopic experiments show one signal at 78 K at an isomer shift of −11.4(1) mm/s and a line width of 2.7(1) mm/s compatible with divalent europium. At 4.2 K full magnetic hyperfine field splitting with a field of 26.4(4) T is detected. The already known compounds CaM2Ge2 (M: Mn-Zn) also crystallize in the ThCr2Si2-type structure. Their MGe4 tetrahedra are strongly distorted with M=Ni and nearly undistorted with M=Mn or Zn. According to LMTO electronic band structure calculations, the distortion is driven by a charge transfer from M-Ge antibonding to bonding levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号