首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhonghai Zhang 《Talanta》2007,73(3):523-528
A composite nano-ZnO/TiO2 film as photocatalyst was fabricated with vacuum vaporized and sol-gel methods. The nano-ZnO/TiO2 film improved the separate efficiency of the charge and extended the range of spectrum, which showed a higher efficiency of photocatalytic than the pure nano-TiO2 and nano-ZnO film. The photocatalytic mechanism of nano-ZnO/TiO2 film was discussed, too. A new method for determination of low chemical oxidation demand (COD) value in ground water based on nano-ZnO/TiO2 film using the photocatalytic oxidation technology was founded. This method was originated from the direct determination of the Mn(VII) concentration change resulting from photocatalytic oxidation of organic compounds on the nano-ZnO/TiO2 film, and the COD values were calculated from the absorbance of Mn(VII). Under the optimal operation conditions, the detection limit of 0.1 mg l−1, COD values with the linear range of 0.3-10.0 mg l−1 were achieved. The results were in good agreement with those from the conventional COD methods.  相似文献   

2.
Guangmei Guo  Ping Yu 《Talanta》2009,79(3):570-575
TiO2- and Ag/TiO2-nanotubes (NTs) were synthesized by hydrothermal methods and microwave-assisted preparation, respectively. Scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller particle surface area measurement and X-ray diffraction were used to characterize the nanotubes. Rutile TiO2-NTs with Na2Ti5O11 crystallinity had a length range of 200-400 nm and diameters of 10-20 nm. TiO2- and Ag/TiO2-NTs with a 0.4% deposition of Ag had high surface areas of 270 and 169 m2 g−1, respectively. The evaluation of photocatalytic activity showed that Ag/TiO2-NTs displayed higher photocatalytic activity than pure TiO2-NTs and a 60.91% degradation of Rhodamine-B with 0.8% deposition of Ag species. Also 60% of Rhodamine-6G was physisorbed and 40% chemisorbed on the surface of TiO2-NTs. In addition, the photocatalytic degradations of organochlorine pesticides taking α-hexachlorobenzene (BHC) and dicofol as typical examples, were compared using Ag/TiO2-NTs, and found that their degradations rates were all higher than those obtained from commercial TiO2.  相似文献   

3.
An excellent visible-light-responsive (from 400 to 550 nm) TiO2−xNx photocatalyst was prepared by a simple wet method. Hydrazine was used as a new nitrogen resource in this paper. Self-made amorphous titanium dioxide precursor powders were dipped into hydrazine hydrate, and calcined at low temperature (110 °C) in the air. The TiO2−xNx was successfully synthesized, following by spontaneous combustion. The photocatalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), UV-Vis diffuse reflectance spectrometer (DRS), and X-ray photoelectron spectroscopy (XPS). Analysis of XPS indicated that N atoms were incorporated into the lattice of the titania crystal during the combustion of hydrazine on the surface of TiO2. Ethylene was selected as a target pollutant under visible-light excitation to evaluate the activity of this photocatalyst. The newly prepared TiO2−xNx photocatalyst with strong photocatalytic activity and high photochemical stability under visible-light irradiation was firstly demonstrated in the experiment.  相似文献   

4.
A series of polyaniline-anatase TiO2 (PANI-TiO2) nanocomposite powders with different PANI:TiO2 ratios were prepared by ‘in-situ’ deposition oxidative polymerization of aniline hydrochloride using ammonium persulfate (APS) as oxidant in the presence of ultrafine grade powder of anatase TiO2 cooled in an ice bath. And the solid-phase photocatalytic degradation of PANI-TiO2 nanocomposites was investigated under the ambient air in order to assess the feasibility of developing photodegradable polymers. The photodegradation of the composite powders was compared with that of pure PANI powders by performing weight loss monitoring, elemental analysis, FT-IR and UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The PANI-TiO2 nanocomposite powders showed highly enhanced photodegradation and the photodegradation increased with decreasing ratios of PANI:TiO2. A weight loss of about 6.8% was found for the PANI-TiO2 (1:3) nanocomposite; however, the weight loss of the PANI-HCl powder was only 0.3% after being irradiated for 60 h under air. The photocatalytic degradation of the nanocomposite powders accompanied the peak intensity decrease in the FT-IR spectra at 1235 cm−1, attributed to C-N stretching mode for benzenoid unit, and the depigmentation of the powders due to the visible light scattering from growing cavities. The elemental analysis and XPS analysis of the composite showed that the bulk and surface concentrations of N decreased with irradiation. A possible mechanism for the photocatalytical oxidative degradation was also mentioned.  相似文献   

5.
Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area (SBET) of 279.0 m2 g−1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.  相似文献   

6.
High-energy electron-beam with energy of 1 MeV was used for modifying surface structure of TiO2 thin films on carbon fiber prepared by using atomic layer deposition under atmospheric pressure. TiO2 nanoparticles (∼20 nm) on carbon fiber underwent structural modification of the surface upon electron-beam treatment, resulting in enhanced photocatalytic activity. In contrast, a thicker film of TiO2 did not show such changes in surface structure and photocatalytic activity by electron-beam treatment. We demonstrate that electron-beam can be used for modifying surface structure of photocatalysts consisting of nanoparticles for improvement of their activity.  相似文献   

7.
This paper described a new method for the preparation of Zr doped TiO2 nanotube arrays by electrochemical method. TiO2 nanotube arrays were prepared by anodization with titanium anode and platinum cathode. Afterwards, the formed TiO2 nanotube arrays and Pt were used as cathode and anode, respectively, for preparation of Zr/TiO2 nanotube arrays in the electrolyte of 0.1 M Zr(NO3)4 with different voltage and post-calcination process. The nanotube arrays were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV-Vis diffusion reflection spectra (DRS). The photocatalytic activities of these nanotubes were investigated with Rhodamine B as the model pollutant and the results demonstrated that the photocatalytic efficiency of Zr doped TiO2 nanotubes was much better than that of TiO2 nanotubes under UV irradiation. Zr/TiO2 nanotube arrays doped at 7 V and calcined at 600 °C (denoted as TiO2-7 V-600) achieved the best photocatalytic efficiency and the most optimal doping ratio was 0.047 (Zr/Ti). TiO2-7 V-600 could be reused for more than 20 times and maintained good photocatalytic activities.  相似文献   

8.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

9.
Nitrogen and cerium codoped TiO2 photocatalysts were prepared by a modified sol-gel process with doping precursors of cerium nitrate and urea, and characterized by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray photoelectron spectra (XPS) and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS). Results indicate that anatase TiO2 is the dominant crystalline type in as-prepared samples, and CeO2 crystallites appear as the doping ratio of Ce/Ti reaches to 3.0 at%. The TiO2 starts to transform from amorphous phase to anatase at 987.1 K during calcination, according to the TG-DSC curves. The XPS show that three major metal ions of Ce3+, Ce4+, Ti4+ and one minor metal ion of Ti3+ coexist on the surface. The codoped TiO2 exhibits significant absorption within the range of 400-500 nm compared to the non-doped and only nitrogen-doped TiO2. The enhanced photocatalytic activity of the codoped TiO2 is demonstrated through degradation of methyl orange under visible light irradiation.  相似文献   

10.
A novel adsorbent of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 was prepared and was used as a packing material for flow injection (FI) micro-column (20 mm × 4.0 mm i.d.) separation/preconcentration on-line coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) simultaneous determination of trace metals (V, Cu, Pb, Cr) in environmental water samples. The experimental conditions for modified mesoporous TiO2 packed micro-column separation/preconcentration of the target metals were optimized and the interference of commonly coexisting ions was examined. The adsorption capacities of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 for V, Cu, Pb and Cr were found to be 14.0, 11.7, 17.7 and 14.5 mg g− 1, respectively. The detection limits of the method were 0.09, 0.23, 0.50 and 0.15 µg L− 1 for V, Cu, Pb and Cr, respectively, with a preconcentration factor of 20. The precision of this method were 1.7% (V), 3.9% (Cu), 4.6% (Pb) and 2.9% (Cr) (n = 7, C = 5 µg L− 1), respectively. The developed method was applied to the determination of trace heavy metals in real samples and the recoveries for spiked samples were found to be in the range of 88.7-107.1%. For validation, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values.  相似文献   

11.
A Polyaniline (PANI)/TiO2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO2, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO2. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities.  相似文献   

12.
We have demonstrated a facile approach for fabricating graphene quantum dots–TiO2 (GQDs–TiO2) nanocomposites by a simple physical adsorption method. Compared with pure GQDs and TiO2 nanoparticles (NPs), the as-prepared GQDs–TiO2 nanocomposites showed enhanced photoelectrochemical (PEC) signal under visible-light irradiation. The photocurrent of GQDs–TiO2/GCE was nearly 30-fold and 12-fold enhancement than that of GQDs/GCE and TiO2/GCE, respectively, which was attributed to the synergistic amplification between TiO2 NPs and GQDs. More interestingly, the photocurrent of GQDs–TiO2 nanocomposites was selectively sensitized by dopamine (DA), and enhanced with the increasing of DA concentration. Further, a new PEC methodology for ultrasensitive determination of DA was developed, which showed linearly enhanced photocurrent by increasing the DA concentration from 0.02 to 105 μM with a detection limit of 6.7 nM (S/N = 3) under optimized conditions. This strategy opens up a new avenue for the application of GQDs-based nanocomposites in the field of PEC sensing and monitoring.  相似文献   

13.
MWCNT/TiO2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO2 was 20%, MWCNT/TiO2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO2 nanostructures at 400 °C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue.  相似文献   

14.
The layered compound of lead bismuth oxybromide PbBiO2Br, prepared by conventional solid-state reaction method, has an optical band gap of 2.3 eV, and possesses a good visible-light-response ability. The references, PbBi2Nb2O9, TiO2−xNx, BiOBr and BiOI0.8Cl0.2, which are excellent visible-light-response photocatalysts, were applied to comparatively understand the activity of PbBiO2Br. Degradation of methyl orange and methylene blue was used to evaluate photocatalytic activity. The results show that PbBiO2Br is more photocatalytically active than PbBi2Nb2O9, TiO2−xNx and BiOBr under visible light.  相似文献   

15.
Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能   总被引:2,自引:0,他引:2  
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒。利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能。结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍。而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%。  相似文献   

16.
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒.利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能.结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍.而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%.  相似文献   

17.
Mesoporous TiO2-CeO2 nanopowders responding to visible wavelength were synthesized by using a surfactant assisted sol-gel technique. They were obtained using metal alkoxide precursors modified with acetylacetone (ACA) and laurylamine hydrochloride (LAHC) as surfactant. The samples were characterized by XRD, nitrogen adsorption isotherm, SEM, TEM, and selected area electron diffraction (SAED), respectively. The 95 mol% TiO2-5 mol% CeO2 system yielded single anatase phase, however, further addition of the CeO2 formed cubic CeO2 structure while anatase TiO2 decreased. Additions of 5 and 10 mol% CeO2 increased the surface area, but those of 25, 50, and 75 mol% CeO2 did not affect it very much. By using this mixed metal oxides system, TiO2 can be modified to respond to the visible wavelength. The mixed metal oxides had catalytic activity (evaluating the formation rate of I3) about 2-3 times higher than pure CeO2, while nanosize anatase type TiO2 materials had no catalytic activity under visible light. The catalytic activity was almost proportional to the specific surface area. The formation rate of I3 was much improved by changing the calcination temperature and calcination period. Highest catalytic activity in this study was obtained for the 50 mol% TiO2-50 mol% CeO2 nanopowders calcined at 250 °C for 24 h.  相似文献   

18.
In this paper, the photoelectrochemical behavior of graphene-TiO2 (G-TiO2) nanohybrids was investigated in the visible region and a new photoelectrochemical sensor for sensitive determination of nicotinamide adenine dinucleotide (NADH) was proposed. Under visible light, the G-TiO2 nanohybrids possessed enhanced photocurrent, which was nearly 5 times than that of pure TiO2 nanocrystals (NCs). Based on the enhanced photocurrent of G-TiO2 nanohybrids toward NADH, a new photoelectrochemical methodology for ultrasensitive determination of NADH was developed. The proposed sensor showed linearly enhanced photocurrent by increasing the NADH concentration from 1.0 × 10−8 to 2.0 × 10−3 M with a low detection limit of 3.0 × 10−9 M. Furthermore, this sensor exhibited good selectivity and stability towards NADH determination. This strategy opens up a new avenue for the application of graphene-based hybrids in the field of photoelectrochemical sensing and monitoring.  相似文献   

19.
本文通过水热法制备二氧化钛纳米管(TiO2NT),并用制备的TiO2NT对碱性电解水制氢装置的镍片阳极进行修饰,在电解水的基础上,通过光催化与电解过程的耦合,提出并实现了光催化辅助电解水制氢过程。通过XRD、UV-Vis、FE-SEM、AFM和光催化辅助电解水制氢等方法对试样的结构和性能进行了表征和测试。结果表明,在紫外光照条件下,用TiO2NT修饰镍片阳极的光催化辅助电解水过程的产氢速率比单纯电解水提高了61%。  相似文献   

20.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号