首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline perovskite cobalt oxides Sr1-xRxCoO3 (R=Y and Ho; 0?x?1) were prepared by high-pressure/high-temperature technique. X-ray powder patterns of the Y-system indicated cubic perovskite form for 0?x?0.5, and orthorhombic perovskite form for x=0.8 and 1.0, while coexisting of the two phases for x=0.6. The cubic perovskite samples had metallic electric resistivities while the orthorhombic ones with semiconducting or insulating nature. The parent compound SrCoO3 showed a ferromagnetic transition at 266 K. With the Y substitution, the transition temperature increased slightly to ∼275 K at x=0.1, then decreased rapidly to ∼60 K for x=0.6. The YCoO3 (x=1) sample showed non-magnetic behavior. The Ho-substituted system showed quite similar structural, transport and magnetic properties to those of the Y-system.  相似文献   

2.
The oxygen vacancies distribution in the rigid lattice and the thermally activated motion of oxygen atoms are studied in La1−xSrxGa1−xMgxO3−x (x=0.00; 0.05; 0.10; 0.15 and 0.20) compounds. For that 71Ga, 25Mg and 17O NMR was performed from 100 K up to 670 K, and ion conductivity measurements were carried out up to 1273 K. The comparison of the electric field gradients at the Ga- and Mg-sites evidences that oxygen vacancies appear exclusively near gallium cations as a species trapped below room temperature in local clusters, GaO5/2-□-GaO5/2. These clusters decay at higher temperature into mobile constituents of the structural octahedra Ga(O5/61/6)6/2. At the same time, the nearest octahedral oxygen environment of magnesium cations persists at different doping levels. The case of two adjacent vacant anion sites is found highly unlikely within the studied doping range. The thermally activated oxygen motion starts to develop above room temperature as is observed from both the motional narrowing of 17O NMR spectra and the 17O nuclear spin-lattice relaxation rate. The obtained results show that two types of motion exist, a slow motion and a fast one. The former is a long-range diffusion whereas the latter is a local back and forth oxygen jumps between two adjacent anion sites. These sites are strongly differentiated by the probability of the vacancy formation, like the vacant apical site and the occupied equatorial site in the orthorhombic compositions x <0.15.  相似文献   

3.
The influence of Bi3+ on the structural and magnetic properties of the rare-earth-containing perovskites REFe0.5Mn0.5O3 (RE=La,Nd) was studied, and the limit of bismuth substitution was determined to be x≤0.5 in BixRE1−xFe0.5Mn0.5O3+δ (RE=La,Nd) at ambient pressure. Crystal structures in both La and Nd series were determined to be GdFeO3-type Pnma with the exception of the Bi0.3La0.7Fe0.5Mn0.5O3 sample, which is monoclinic I2/a in the abb tilt scheme. The samples undergo a transition to G-type antiferromagnetic order along with a weak ferromagnetic component, mixed with cluster-glass type behavior. The substitution of bismuth into the lattice results in a drop in TN relative to the lanthanide end-members. Long range ordering temperatures TN in the range 240-255 K were observed, with a significantly lower ordered magnetic moment in the case of lanthanum (M∼1.7-1.9 μB) than in the case of neodymium (M∼2.1 μB).  相似文献   

4.
The solid solutions of ScBRh3-ScRh3 and CeBRh3-CeRh3 are synthesized by the arc melting method, where RBRh3 and RRh3 (R=rare earth element) have perovskite and AuCu3 type structures, respectively. The binding energy of Sc 2p3/2 for ScBxRh3 increases with the boron concentration. The Knight shift of 45Sc observed by nuclear magnetic resonance spectroscopy decreases with increase of boron concentration. The decrement of the Knight shift corresponds the Sc 4s electron density at the Fermi level. The intensity ratio of f2f1f0 of Ce 3d XPS spectrum changes with boron concentration of CeBxRh3. It is concluded that in both cases of ScBxRh3 and CeBxRh3 the charge on the atoms on A-site changes with the concentration of the atoms on B-site, where the atoms are not directly bound.  相似文献   

5.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

6.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

7.
The title compounds have been synthesized by a citrate technique followed by thermal treatments in air (BiFe0.5Mn1.5O5) or under high oxygen pressure conditions (BiFeMnO5), and characterized by X-ray diffraction (XRD), neutron powder diffraction (NPD) and magnetization measurements. The crystal structures have been refined from NPD data in the space group Pbam at 295 K. These phases are isostructural with RMn2O5 oxides (R=rare earths) and contain infinite chains of Mn4+O6 octahedra sharing edges, linked together by (Fe,Mn)3+O5 pyramids and BiO8 units. These units are strongly distorted with respect to those observed in other RFeMnO5 compounds, due to the presence of the electronic lone pair on Bi3+. It is noteworthy the certain level of antisite disorder exhibited in both samples, where the octahedral positions are partially occupied by Fe cations, and vice versa. BiFexMn2−xO5 (x=0.5, 1.0) are short-range magnetically ordered below 20 K for x=0.5 and at 40 K for x=1.0. The main magnetic interactions seem to be antiferromagnetic (AFM); however, the presence of a small hysteresis in the magnetization cycles indicates the presence of some weak ferromagnetic (FM) interactions.  相似文献   

8.
The tetragonal compound Bi2CuO4 was investigated at high pressures by using in situ Raman scattering and X-ray diffraction (XRD) methods. A pressure-induced structural transition started at 20 GPa and completed at ∼37 GPa was found. The high pressure phase is in orthorhombic symmetry. Raman and XRD measurements revealed that the above phase transition is reversible.  相似文献   

9.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

10.
A structural, magnetic and electronic study of the cobaltocuprate CoSr2Y2−xCexCu2Oδ (x=0.5-0.8) has been performed. All materials crystallise in the orthorhombic Cmcm symmetry space group in which chains of corner linked CoO4 tetrahedra run parallel to the 1 1 0 direction. An antiferromagnetic transition is observed for x=0.5-0.8; TM increases with x. A change in the dimensionality of the magnetic order occurs at x=0.8 as the interchain distance increases to a critical value. There is charge transfer between the cuprate planes and cobaltate layer as Ce doping increases, so that Co3+ is partially oxidised to Co4+ with a concomitant reduction in the valence of Cu. Superconductivity is not observed in any of the samples and a crossover from Mott to Efros and Shklovskii variable range hopping behaviour is evidenced as x increases from 0.5 to 0.8.  相似文献   

11.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

12.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

13.
Fe3+-Nb5+ co-doped SnO2 was prepared at 1200 °C by a simple chemical co-precipitation method. The Sn1−2xFexNbxO2 solid solutions kept cassiterite structure in the range of 0<x?0.33, and their cell parameters decrease with increasing x. While x=0.40, a second phase with orthorhombic FeNbO4 structure co-exists with the cassiterite phase, and the second phase becomes dominant while x?0.45. The magnetic measurements indicated that low doping ratio sample (x=0.03) exhibits paramagnetic behavior. A paramagnetic-to-antiferromagnetic phase transition was observed for the samples with higher doping ratio (x?0.15).  相似文献   

14.
Five new analogues of the β-CeNiSb3 family have been synthesized and found to be LnNi(Sn,Sb)3 and isostructural to the previously reported β-CeNiSb3. LnNi(Sn,Sb)3 (Ln=Pr, Nd, Sm, Gd, or Tb) crystallizes in the orthorhombic space group, Pbcm, with lattice parameters of a∼12.9 Å, b∼6.1 Å, c∼12.0 Å. The structure consists of layers of nearly square nets of X (X=Sn/Sb) atoms and highly distorted NiX6 octahedra. Lanthanide atoms are located between layers of X and NiX6 octahedra. All analogues are metallic and experimental effective magnetic moments are in agreement with the respective Ln3+ calculated moments.  相似文献   

15.
The substitution of nickel by platinum in the binary LaNi5 compound (CaCu5 structure type, a=5.019(1) Å, c=3.981(1) Å, space group P6/mmm) and its effect on the hydrogenation properties was studied. The phase LaNi5−xPtx has a homogeneity domain ranging from x=0 to 5. For x<3, platinum substitutes almost exclusively on site 3g and also replaces nickel on site 2c for x>3. Contrary to what is observed in other systems, the hydrogen absorption plateau pressure was found to increase as a function of the cell volume. Powder neutron diffraction experiments were conducted for two deuterated compounds with x=0.25 and 0.75. Deuterium partial ordering occurs in the case of x=0.25 leading to a symmetry decrease to the space group P6mm (LaNi4.75Pt0.25D5.23, a=4.225(1) Å, c=5.357(1) Å, Z=1, RBragg=3.3%). For x=0.75, an orthorhombic superstructure based on the CaCu5-type lattice was found (LaNi4.25Pt0.75D2.61, aorth=√3ahex=9.089(1) Å, borth=bhex=5.272(1) Å, corth=2chex=8.145(1) Å, Z=4, SG Ibam, RBragg=6.1%).  相似文献   

16.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

17.
Two Ruddlesden-Popper compounds Can+1MnnO3n+1 with n=2 and 3 synthesized by a citrate gel technique have been studied by TEM. The structure of Ca4Mn3O10 is consistent with the previously determined structure having the space group Pbca and a a c+/a a c+ tilt system. The presence of defects suggests the possible high-temperature phase transition from untilted I4/mmm to Pbca. The structure of Ca3Mn2O7 was found to be different from the previously suggested I4/mmm symmetry. Ca3Mn2O7 forms with an orthorhombic structure with either Cmcm or Cmc21 space group. A structural model for Cmc21 based on the tilting of almost-rigid octahedra with a+ c c/a+ c c tilt system is proposed. The lamellar defects were shown to be twin variants of the Cmc21 structure with the (001)t interfaces, which suggests the possible tilting phase transition from the ideal I4/mmm to Cmc21 following the maximal group-subgroup symmetry tree: I4/mmmFmmmBbmm(Cmcm)→Bb21m(Cmc21).  相似文献   

18.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

19.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

20.
The ternary compound Ba2Cd3Bi4 crystallizes in the C-centered orthorhombic space group Cmce (No. 64) with its own type (Pearson's symbol oC36; a=7.019(3) Å, b=17.389(7) Å and c=9.246(3) Å determined at -23 °C). Although the structure of this intermetallic compound with transition metal in d10 configuration has already been established, details such as the rather unusual coordination of the Cd-atoms and the elongation in specific direction of their anisotropic displacement parameters had not been explained. These facts, along with the higher than 12% R-values from the original structure determination prompted the systematic structural studies by single-crystal X-ray diffraction at several different temperatures. The results from these studies confirm strong temperature dependence of the cadmiums’ anisotropic displacement parameters, concomitant rather large thermal expansion along the crystallographic b-axis. Electronic band structure calculations performed by the TB-LMTO-ASA method are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号