首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In particle tracking velocimetry, the necessary information is the 3D location of a given particle in space. This information can be obtained by examining the real image or by analyzing the interference fringe recorded on a digital camera. In this work, we measure the three-dimensional position of spherical particles by calculating the Central Spot Size of the interference pattern of a particle diffraction image. The Central Spot Size is obtained by combining the Continuous Wavelet transform and circle Hough transform. The Continuous Wavelet transform allow us in only one step enhanced quality of particle images and sets a threshold to select properly places where a Central Spot Size appear in order to determine its size via the Hough transform. The size and centroid of the Central Spot Size render z and x-y position of a particle image, respectively. The Central Spot Size is related to a criterion of a simplified theory given by the Fraunhofer theory in order to obtain z particle position. Our approach has been applied to simulated and experimental particle images. Simulated particle images show good agreement between actual and calculated Central Spot Size. An average relative error of 0.5% and 1.12% for x-y and z directions, respectively, was found in the analysis. Our experimental particle images were obtained from particle motion inside a channel. The quality of the particle images determines the accuracy of the calculation of the Central Spot Size of a particle image.  相似文献   

2.
Laser-based volumetric colour-coded three-dimensional particle velocimetry   总被引:1,自引:0,他引:1  
We present a method of three-dimensional particle velocimetry with a single digital colour camera using multiple colour illumination to encode image depth over a large volume. A copper vapour laser operating at 511 nm is used to pump an optical fibre producing a multiple-wavelength beam via multiple order stimulated Raman scattering. The beam is dispersed and formed into a stack of thin sheets to illuminate a volume of space. The spatial co-ordinates of particles imaged within the illuminated volume are obtained from their imaged x,y positions with depth discerned from particle hue (set by the wavelength of illumination). The method exhibits an RMS depth error of 3% in relation to the thickness of the illuminated region. This paper reports a proof-of-principle of three-dimensional particle imaging using a multi-wavelength laser source with a view to 3D-3C particle velocimetry.  相似文献   

3.
A real-time video encoded particle imaging tracking technique (VPIT) for velocity measurement has been developed. It can currently capture images of a seeded particle flow field at up to a video rate of 25 pictures per second. The method as shown in this paper is suitable for measuring a slow sparsely seeded flow. A VPIT image presents a triplet image pattern. The image has been encoded into a single video frame with the time history of three events. This is achieved by synchronising the video (CCIR) signal from a CCD (charge coupled device) camera, operating in frame integration mode with a suitable light source. The principle of VPIT demonstrates how the direction and the magnitude of the velocity can be recorded for a sequence or track of particles. The VPIT triplet images resolve several common difficulties associated with the application of PIV. Firstly, the time history of the laser pulse can be ‘labeled’ on an individual particle image. Secondly, there is no velocity direction ambiguity in the VPIT image. Thirdly, it is possible to extract the acceleration of the particle from a single VPIT frame. Finally, for a sequence of captured frames, the problems of particle path tracking are simplified, because each VPIT image has a video encoded time sequence ‘labelled’ on it.  相似文献   

4.
A digital particle holographic system for measurements of spray fields is presented. A double exposure hologram recording system with a synchronization system for time control is established, resulting in digital holograms that can be quickly recorded. To process recorded holograms, the correlation coefficient method is used for focal plane determination of particles. To remove noise and improve the quality of holograms and reconstructed images, a Wiener filter is adopted. The two-threshold and image segmentation methods are used for binary image transformation. For particle pairing, the match probability method is adopted. The proposed system is applied to a spray field, and three-dimensional velocities and sizes of spray droplets are measured. Measurement results from the digital holographic system are compared to those made by laser instruments, which prove the feasibility of the proposed in-line digital particle holographic system as a good measurement tool for spray droplets.  相似文献   

5.
同轴全息术用于粒子场测量的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
 采用数值方法模拟了同轴全息术测量粒子场的过程,对两种不同的数值算法_直接傅里叶变换算法和卷积算法,进行了分析和比较,结果表明卷积算法符合实际要求。分析了记录图像的空间频谱及其对图像采样频率的要求,得出了在记录波长、采样间隔等条件一定的情况下的最小记录距离。对于一幅512×512像素的数字图像,若像元尺寸为6.7 μm,所用光波长为532 nm,则最小记录距离为43.2 mm。在此基础上对实验记录的振幅和相位型静态粒子的数字全息图,均得到了满意的数值再现像。  相似文献   

6.
We report several results that validate the accuracy of a retrieval method for the determination of a number of aerosol particle properties from their mid infrared (600-6000 cm−1) extinction spectra. These properties include the number density, chemical composition, phase, size distribution, and to some extent, shape. The approach is based on information obtained in laboratory studies of micron-sized particles using the aerosol flow tube (AFT) technique. We report here experiments in which our method is used to measure a variety of aerosols including SiO2 micro-spheres as well as solid NaCl, (NH4)2SO4, ice and liquid water particles. The uncertainties in the retrieved aerosol properties associated with the particle shapes (spheres, spheroids, cylinders, hexagonal and rectangular prisms) as well as the effect of variations in the spectral range were evaluated. To assess the accuracy of the retrieved size distributions and particle shapes, the properties calculated from infrared spectra were compared with corresponding properties determined using alternative methods. We used scanning electron microscopy (SEM) for solid (NH4)2SO4 and NaCl aerosols and direct particle imaging with an optical microscope assembly for liquid water aerosols. On the basis of the validation results, we discuss the boundaries of applicability of the most popular spectral model, single scattering by spherical, homogeneous aerosol particles.  相似文献   

7.
The attachment of radioactive atoms and ions to spherical aerosol particles has been studied theoretically. For uncharged atoms the deposition is considered to be solely governed by thermal diffusion. With calculations based on the “limiting-sphere”-method ofArendt-Kallman it is found, that the attached activity is proportional toΦ 2 for aerosol particle diametersΦ smaller than 0.1 μm, and proportional toΦ forΦ greater than 1 μm. For charged ions the diffusion process is modified by the influence of electrostatic forces between the diffusing ions and the aerosol particles. In the frequently occurring case of a symmetrically bipolar charged aerosol this influence can be expressed by a functionG p(Φ), which depends on the diameterΦ and the effective numberp of elementary charges on the aerosol particle. For an aerosol particle diameterΦ greater than 0.1 μm the attached activity is proportional toΦ 1.1, and forΦ smaller than 0.01 μm it is proportional toΦ 1.55. The effects of neglecting various terms in the calculation are considered. The distribution of natural radioactivity on atmospheric aerosols has been calculated for various particle size distributions according toJunge. The calculation shows that about 90% of the total natural activity should be attached to particles smaller thanΦ=0.5 μm, and about 35% to particles smaller thanΦ=0.1 μm. The time T1/2, in which the concentration of the radioactive particles decreases to half the initial value, depends on the concentration of the aerosol particles and on their size distribution. For 104 aerosol particles per cm3 and the size distributions mentioned,T 1/2 varies between 15 and 30 seconds for radioactive ions. For radioactive atomsT 1/2 is greater than it is for ions in the range of aerosol particle diameters belowΦ=0.25 μm, and smaller ifΦ greater than 0.25 μm.  相似文献   

8.
The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.  相似文献   

9.
光学成像技术极大地拓展了人类的视觉极限,提高了人们观察和理解现实世界的能力。越多地获得目标的光学信息,对其的认识越充分。数字全息术是一种可以将样本的三维信息以二维全息图的形式编码记录下来的一种成像技术。通过获得由携带物体信息的物光波和参考光波叠加产生的干涉图案,可以以数字化的方式实现多种重建模态,例如图像恢复、相位成像和切片成像等。光学扫描全息术是一种独特的数字全息成像技术,通过主动式二维化扫描对三维物体进行成像,其完整的波前信息可以被单像素探测器记录,并基于光外差检测进行信号解调,从而恢复出复数全息图。对光学扫描全息术的最新进展进行介绍。首先,基于双光瞳成像系统,通过特殊的硬件和算法设计,提高光学成像系统的性能,如提高空间分辨率、缩短扫描时间。其次,基于计算成像原理,通过改进和优化全息像重建算法,实现高质量的图像恢复,主要涉及切片成像和三维成像等重建模态。第三,介绍光学扫描全息术的其他研究方向,并讨论该领域未来可能的发展方向。  相似文献   

10.
Devolatilization is an important process in pulverized coal combustion because it affects the ignition, volatile combustion, and subsequent char burning and ash formation. In this study, high-speed digital in-line holography is employed to visualize and quantify the particle and volatile evolution during pulverized coal combustion. China Shanxi bituminous coal particles sieved in the range of 105–154 µm are entrained into a flat flame burner through a central tube for the study. Time-resolved observations show the volatile ejection, accumulation, and detachment in the early stage of coal combustion. Three-dimensional imaging and automatic particle extraction algorithm allow for the size and velocity statistics of the particle and stringy volatile tail. The results demonstrate the smaller particle generation and coal particle swelling in the devolatilization. It is found that the coal particles and volatiles accelerate due to the thermal buoyancy and the volatiles move faster than the coal particles. On average, smaller particles move faster than the larger ones while some can move much slower possibly because of the fragmentation.  相似文献   

11.
We present a new development of digital off-axis (OA) holography for determining the instantaneous solid particle positions in a flow. This holographic imaging method uses a CCD camera for the simultaneous digital recording of two views of digital Fresnel OA holograms on the same support. The reconstruction is obtained numerically. The method provides two orthogonal views of the same flow area of interest at the same instant. It helps to overcome the depth of focus problem existing for the particle image reconstructions and that is inherent to the method. This method has the advantage of being simpler than the methods presently available, and it does not suffer from the flaws of in-line holographic configuration. Furthermore it is completely digital and thus avoids the cumbersome analysis following hologram recording. Digital holograms and digital reconstructions are obtained for solid particles of 200 mum moving into a stirred flow cell of 5 cm(3).  相似文献   

12.
Varying ambient light may cause serious decorrelation effect in the images recorded using an ordinary optical imaging device, which prevent digital image correlation (DIC) from out-of-laboratory use. In this paper, we describe an easy-to-implement yet effective monochromatic light illuminated active imaging DIC method for obtaining high-quality images suitable for high fidelity deformation measurement. Experiments reveal that the active imaging DIC method is able to provide reliable and accurate measurements even though the ambient light has been seriously changed. The active imaging DIC method is promising for developing flexible and robust in situ deformation measurement systems for use in both laboratory and non-laboratory environment, and should therefore have more potential engineering applications.  相似文献   

13.
单帧单曝光图像法测量气固两相流速度场   总被引:5,自引:0,他引:5  
本文提出一种基于单帧单曝光图像的气固两相流固相颗粒的速度场测量方法。通过控制相机的单次曝光时间获得流场中颗粒的单帧运动模糊图像,运用分水岭算法分割图像,提取颗粒,由自相关函数获得各颗粒的速度大小和方向,重建二维速度场。利用该方法对玻璃珠在空气中重力沉降的速度测量结果与理论值基本一致,矢量场与颗粒运动轨迹相符,说明该方法可以用于气固两相流速度场的测量。研究发现使用片光源比背光源能够获得更加准确的速度值。  相似文献   

14.
An aerosol measurement instrument is presented which allows for the simultaneous measurement of the size distribution, number concentration and velocities of particles. A commercial optical particle counter (OPC) was modified in terms of optics and signal evaluation to provide the required measurement information. The design of this instrument allows the definition of a cubic measuring volume by purely optical means. This is achieved by an aperture/lens system which projects a sharply defined light beam into a stream of aerosol flow. Light scattered from single particles at average angles of 90° is collected by two opposite receiver units, each projecting light on to a separate photomultiplier. The intensity of the scattered light with this instrument is found to be an unambiguous function of the particle size. The total number of particles detected per unit time results in the particle flux. The particle velocity can be calculated, in principle, through the correlation of the signal length and the optical length of the measuring volume, provided that the particles have a straight trajectory through the measuring volume and the measuring volume length in the mean flow direction is well defined. The absence of sharpness in real optical projections effects a border zone of definite length, in which the illumination declines to zero. This leads, together with the low-pass filtering of the particle signals, to an increase in the length of the signal slopes, causing some difficulties in the determination of the signal length. A digital signal evaluation technique was developed that renders possible the clear differentiation between the slope and the kernel region of the signal. The latter represents the motion of particles through the completely illuminated region, which can be a more accurate parameter to define the signal length. In addition to the signal length determination, a cross-correlation technique was tested for its potential to obtain particle velocity. the instrument has two interlaced measuring volumes of nearly the same size, which are shifted for this special application in the main flow direction by 20 μm. The phase difference between the signals from the two photomultipliers, together with the optical distance, yields the particle velocity.  相似文献   

15.
SHILA MASKEY  CHUL-UN RO 《Pramana》2011,76(2):281-292
An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and O, as well as higher-Z elements that can be analysed by conventional ED-EPMA. The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulphates, nitrates, ammonium and carbonaceous particles, contain low-Z elements. To demonstrate its practical applicability, the application of the low-Z particle EPMA for the characterization of Asian Dust, urban and subway aerosol particles is shown herein. In addition, it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single-particle analysis using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX), showing that the technique is useful and reliable for the characterization of submicron aerosol particles.  相似文献   

16.
We have prepared spherical non-agglomerated silver nanoparticles by an evaporation–condensation–dilution/cooling technique. Silver was evaporated from a crucible in a tubular flow reactor. A porous tube diluter was used to quench the carrier gas at the outlet of the reactor to enhance the formation of small particles and to suppress agglomeration and other particle growth mechanisms. The number size distribution of the prepared particles was measured with a differential mobility analyser–condensation nucleus counter combination and the size and the shape of the particles were analysed with transmission electron microscope. The system was modelled using a sectional aerosol dynamics computer code to estimate the importance of different aerosol processes. In all conditions the particles obtained were non-agglomerated and spherical. The mean particle diameter varied from 4 to 10-nm depending on boundary conditions. From the modelling studies it can be concluded that the nucleation rate is the most important parameter controlling the final particle size.  相似文献   

17.
A direct method for extracting optical constants in the mid-infrared (IR), using small particle's spectra is presented. The method is based on the direct extraction of the optical constants from the measured spectra using the Rayleigh approach for absorbance cross section of small particles. This was achieved by using an experimental system combining a scanning mobility particle sizing system attached to a long-path IR cell, allowing simultaneous measurements of aerosol size distribution and their IR spectra.The inversion procedure was tested on crystalline ammonium sulfate aerosols, for which high resolution set of optical constants was obtained and were found to be in good agreement with recently published data. Since the extraction of the k and n spectra is deduced from the refractive index dependent complex function, the exact band features can be obtained, unlike the commonly used iterative methods that modify simultaneously both band features and scale of k and n during the calculation procedure. The suggested procedure is simple to apply; nevertheless, it is sensitive to scaling errors of the final constants resulting from uncertainties in total particle volume measurements.  相似文献   

18.
Iron oxides, usually in the form of hematite or goethite, comprise an important component of atmospheric mineral dust aerosol. Because these minerals are strong visible absorbers they play a critical role in determining the overall impact of dust aerosol on climate forcing. In this work, results from light scattering measurements from hematite and goethite dust aerosol are presented for three visible wavelengths, λ=470, 550, and 660 nm. We observe important systematic differences in the scattering between these different iron oxide samples, as well as significant wavelength dependence across the visible region of the spectrum. Aerosol size distributions are measured simultaneously with the light scattering, enabling a rigorous comparison between theoretical light scattering models and experimental data. Theoretical simulations of the scattering are carried out using both Mie and T-Matrix theories. Simulations are in reasonably good agreement with experimental data for hematite; thus, our data offer a useful check on tabulated optical constants for hematite. However, simulations show very poor agreement for goethite. The poor agreement in the goethite case is likely the result of particle shape effects related to the rod-like morphology of the goethite particles. This study demonstrates how particle mineralogy and morphology play an important role in dictating the optical properties of mineral dust aerosol, a major component of tropospheric dust.  相似文献   

19.
The particle size distribution within an aerosol containing refractory nanoparticles can be inferred using time-resolved laser-induced incandescence (TR-LII). In this procedure, a small volume of aerosol is heated to incandescent temperatures by a short laser pulse, and the incandescence of the aerosol particles is then measured as they return to the ambient gas temperature by conduction heat transfer. Although the cooling rate of an individual particle depends on its volume-to-area ratio, recovering the particle size distribution from the observed temporal decay of the LII signal is complicated by the fact that the LII signal is due to the incandescence of all particle size classes within the sample volume, and because of this, the particle size distribution is related to the time-resolved LII signal through a mathematically ill-posed equation. This paper reviews techniques proposed in the literature for recovering particle size distributions from TR-LII data. The characteristics of this problem are then discussed in detail, with a focus on the effect of ill-posedness on the stability and uniqueness of the recovered particle size distributions. Finally, the performance of each method is evaluated and compared based on the results of a perturbation analysis. PACS  44.05.+e; 47.70.Pq; 78.70.-g; 65.80.+n; 78.20.Ci  相似文献   

20.
This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10–500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size-calibrated electrostatic TEM sampler. The deposited particles were investigated using electron microscopy techniques in combination with image processing software. This approach enables the chemical and morphological characterization as well as quantification of released nanoparticles from a spray product. The differentiation of solid ENP from the released nano-sized droplets was achieved by applying a thermo-desorbing unit. After optimization, the setup was applied to investigate different spray situations using both pump and gas propellant spray dispensers for a commercially available water-based nano-silver spray. The pump spray situation showed no measurable nanoparticle release, whereas in the case of the gas spray, a significant release was observed. From the results it can be assumed that the homogeneously distributed ENP from the original dispersion grow in size and change morphology during and after the spray process but still exist as nanometer particles of size <100 nm. Furthermore, it seems that the release of ENP correlates with the generated aerosol droplet size distribution produced by the spray vessel type used. This is the first study presenting results concerning the release of ENP from spray products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号