首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title oxide has been obtained by replacing Mn3+ by Fe3+ in the parent oxide DyMn2O5. The crystallographic and magnetic structures have been analysed from neutron powder diffraction (NPD) data, in complement with susceptibility and magnetic measurements. DyFeMnO5 is orthorhombic, belonging to the Pbam space group as the parent compound. The crystal structure contains infinite chains of edge-sharing Mn4+O6 octahedra, interconnected by dimer units of Fe3+O5 square pyramids. There is a certain antisite disorder in the crystal structure, with 8.0% of the Mn4+ sites occupied by Fe cations, and 8.2% of the Fe3+ positions occupied by Mn3+ cations. The magnetization measurements show that DyFeMnO5 presents magnetic order below TC≈178 K; a study of the magnetic structure from the low-temperature NPD patterns indicates an antiferromagnetic coupling of the Mn4+ and Fe3+ spins, with the polarization of the Dy3+ magnetic moments parallel to the those of the Fe sublattice.  相似文献   

2.
The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO5 has been refined from NPD data in the space group Pbam; a=7.2617(6) Å, b=8.5161(6) Å, and c=5.7126(5) Å at 295 K. This oxide is isostructural with RMn2O5 oxides (R=rare earths) and it contains infinite chains of (Cr, Mn)4+O6 octahedra-sharing edges, linked together by (Mn, Cr)3+O5 pyramids and DyO8 units. The high degree of antisite disordering exhibited by DyCrMnO5 is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO5 does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution.  相似文献   

3.
The influence of Bi3+ on the structural and magnetic properties of the rare-earth-containing perovskites REFe0.5Mn0.5O3 (RE=La,Nd) was studied, and the limit of bismuth substitution was determined to be x≤0.5 in BixRE1−xFe0.5Mn0.5O3+δ (RE=La,Nd) at ambient pressure. Crystal structures in both La and Nd series were determined to be GdFeO3-type Pnma with the exception of the Bi0.3La0.7Fe0.5Mn0.5O3 sample, which is monoclinic I2/a in the abb tilt scheme. The samples undergo a transition to G-type antiferromagnetic order along with a weak ferromagnetic component, mixed with cluster-glass type behavior. The substitution of bismuth into the lattice results in a drop in TN relative to the lanthanide end-members. Long range ordering temperatures TN in the range 240-255 K were observed, with a significantly lower ordered magnetic moment in the case of lanthanum (M∼1.7-1.9 μB) than in the case of neodymium (M∼2.1 μB).  相似文献   

4.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

5.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

6.
Sr2Co2O5 with the perovskite-related brownmillerite structure has been synthesised via quenching, with the orthorhombic unit cell parameters a=5.4639(3) Å, b=15.6486(8) Å and c=5.5667(3) Å based on refinement of neutron powder diffraction data collected at 4 K. Electron microscopy revealed L-R-L-R-intralayer ordering of chain orientations, which require a doubling of the unit cell along the c-parameter, consistent with the assignment of the space group Pcmb. However, on the length scale pertinent to NPD, no long-range order is observed and the disordered space group Imma appears more appropriate. The magnetic structure corresponds to G-type order with a moment of 3.00(4) μB directed along [1 0 0].  相似文献   

7.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

8.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

9.
The synthesis and structural properties of Mg1−xMn2+xO4, for 0≤x≤1 are described. Complete miscibility in the solid state exists for this system. For the material with the correct stoichiometry, i.e. MgMn2O4, the effect of temperature on the cation distribution was investigated= above 600°C the inversion degree (m) starts increasing. The electrical conductivity shows a small dependence on P(O2) which is consistent with the small oxygen non-stoichiometry determined by means of thermogravimetry. The main contribution to the transport properties arises from the inversion equilibrium. Two distinct conductivity regimes, below and above the inversion threshold, can be assumed to explain the electrical conductivity and thermoelectric power results.  相似文献   

10.
RMn2O5 (R=La, Pr, Nd, Tb, Bi) crystallites were prepared by a mild hydrothermal method and characterized by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and magnetic measurement. The formation of manganates was sensitive to the alkalinities and Mn-containing precursors of the reaction mixtures. This family of manganates is isostructural and has a space group of Pbam. The magnetic measurements for RMn2O5 showed an antiferromagnetic transition. The strong irreversibility between the ZFC and FC curves indicated a helicoidally magnetic structure below 40 K. The max d.c. susceptibilities of LaMn2O5+δ (δ=0.01, 0.06, 0.08, 0.16, 0.17) were found to be variable and the excess oxygen (δ) in the compounds was influenced by the alkalinity used in the hydrothermal synthesis.  相似文献   

11.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

12.
Samples of Bi1−xTbxFeO3, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO3 to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi3+ lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment (∼3.8 μB) and the TN (∼375 °C) are relatively insensitive to increasing Tb concentrations at the A-site.  相似文献   

13.
The structural properties of the system La1−xCexY2Ni9 with xCe=0, 0.5 and 1 have been investigated by electron probe microanalysis, powder X-ray diffraction and absorption spectroscopy. The compound LaY2Ni9 adopts a rhombohedral structure of PuNi3-type (R-3m space group, Z=3). It can be described as an intergrowth between RM5 (Haücke phase) and RM2 (Laves phase) type structures. Among the two available crystallographic sites for R atoms, lanthanum occupies preferentially the site 3a leading to a partially ordered ternary compound. Substitution by cerium involves anisotropic variations of the cell parameter with a decrease of a and an increase of c leading to an overall cell volume reduction. Increasing cerium content does not induce any symmetry change but leads to a statistical distribution of the rare earths over the two sites 3a and 6c involving an evolution toward a pseudo-binary compound. This behavior is related to the intermediate valence state of cerium observed by X-ray absorption spectroscopy. The hydriding properties of the two compounds LaY2Ni9 and CeY2Ni9 are described in relation with their crystallographic structure.  相似文献   

14.
The clinopyroxene compounds LiFeSi2O6 and LiFeGe2O6 have been investigated by constant wavelength neutron diffraction at low temperatures and by bulk magnetic measurements. Both compounds are monoclinic, space group P21/c and do not exhibit a change in nuclear symmetry down to 1.4 and 5 K respective. However, they transform to a magnetically ordered state below 20 K. LiFeSi2O6 shows a simple magnetic structure with no indication of an incommensurate modulation. The magnetic space group is P21/c′ and the structure is described by a ferromagnetic coupling of spins within the infinite M1 chains of edge-sharing octahedra, while the coupling between these M1 chains is antiferromagnetic. The magnetic phase transition is accompanied by magnetostriction of the lattice when passing through the magnetic phase transition. The magnetic structure of LiFeGe2O6 is different to the silicate: the space group is and the magnetic unit cell doubled along the a-direction. Within the M1 chains spins are coupled antiferromagnetically, while the chain to chain coupling is antiferromagnetic when coupling goes via the GeB tetrahedron and ferromagnetic when it goes via the GeA tetrahedron.  相似文献   

15.
The novel compound Ca2Co1.6Ga0.4O5 with brownmillerite (BM) structure has been prepared from citrates at 950 °C. The crystal structure of Ca2Co1.6Ga0.4O5 was refined, from neutron powder diffraction (NPD) data, in space group Pnma, , , , χ2=1.798, , Rwp=0.0378 and Rp=0.0292. On the basis of the NPD refinement the compound was found to be a G-type antiferromagnet (space group Pnma) at room temperature, with the magnetic moments of cobalt atoms directed along chains of tetrahedra in the BM structure. Electron diffraction and electron microscopy studies revealed disorder in the crystallites, which can be interpreted as the presence of slabs with BM-type structure of Pnma and I2mb symmetry.  相似文献   

16.
Highly ordered LiCo0.5Mn0.5O2 nanowire arrays were prepared using porous anodic aluminum oxide (AAO) template from sol-gel solution containing Li(CH3COO), Co(CH3COO)2, and Mn(CH3COO)2. Electron microscope results showed that uniform length and diameter of LiCo0.5Mn0.5O2 nanowires were obtained, and the length and diameter of LiCo0.5Mn0.5O2 nanowires are dependent on the pore diameter and the thickness of the applied AAO template. X-ray diffraction and electron diffraction pattern investigations demonstrate that LiCo0.5Mn0.5O2 nanowires are a layered structure of LiCo0.5Mn0.5O2 crystal. X-ray photoelectron spectroscopy analysis indicates that the most closely resembling stoichiometric layered LiCo0.5Mn0.5O2 material has been obtained.  相似文献   

17.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

18.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

19.
Single crystals of Ln5Ru2O12 (Ln=Pr, Nd, Sm-Tb) were grown out of either NaOH or KOH fluxes in sealed silver tubes. The crystals of all the phases were observed to be twinned as confirmed by TEM studies. The series crystallize in the C2/m monoclinic system with lattice parameters, a=12.4049(4)-12.7621(6) Å, b=5.8414(2)-5.9488(3) Å, c=7.3489(2)-7.6424(4) Å, β=107.425(3)-107.432(2)° and Z=2. The crystal structure is isotypic with the defect/disorder model of Ln5Re2O12 (Ln = Y, Gd) and consists of one dimensional edge shared RuO6 octahedral chains separated by a two dimensional LnOx polyhedral framework. Magnetic measurements indicate paramagnetic and antiferromagnetic behavior for Ln=Nd, Sm-Gd and Ln=Tb, respectively.  相似文献   

20.
Single crystals of Y5Re2O12 have been grown, and the crystal structure has been determined by X-ray diffraction. This compound crystallizes in space group C2/m with cell dimensions of a=12.4081(10) Å b=5.6604(5)Å, c=7.4951(6) Å, β=107.837(3)°, Z=2. The final refinement led to R1=0.0238, WR2=0.0459 for 1053 observed reflections with F>4σ(F0). Edge-sharing ReO6 octahedra form infinite linear [ReO2O4/2]n chains along the b direction with alternating short and long Re-Re distances. Three crystallographically independent yttrium atoms surround O2 to form OY4 tetrahedra, which share edges and corners in the ab plane to form a two-dimensional Y5O4 network which separates the [ReO2O4/2]n magnetic chains. This compound is therefore isostructural with the series Ln5Re2O12Ln=Gd-Lu, which have been known since 1969. The average Re oxidation state is +4.5 in the chains and a reasonable, if qualitative MO scheme results in one unpaired electron per Re dimer. Consistent with this, magnetic susceptibility data can be fitted to the one-dimensional antiferromagnetic Heisenberg model with S=1/2 and parameters Jintra/k=−89(1)K, g=2.15(4) and χ(TIP)=5(1)×10−4 emu/mol. There is no sign of long-range magnetic order down to 2 K. These results are contrasted with those for the isostructural Y5Mo2O12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号