首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sharma JN  Sharma R 《Ultrasonics》2011,51(3):352-358
The out-of-plane vibrations of a generalized thermoelastic circular plate are studied under different environmental temperature, plate dimensions and boundary conditions. The analytical expressions for thermoelastic damping of vibration and phase velocity of circumferential surface wave modes are obtained. It is noticed that the damping of vibrations and phase velocities of circumferential surface wave modes significantly depend on thermal relaxation time in addition to thermoelastic coupling in circular plates under resonance conditions. The surface conditions also impose significant effects on the vibrations of such resonators. The expressions for displacement and temperature fields in the plate resonator are also derived and obtained. Some numerical results have also been presented for illustration purpose in case of silicon material plate.  相似文献   

2.
This study investigates the thermoelastic dissipation of micro-plate resonators by using the generalized thermoelasticity theory of dual-phase-lagging model. Explicit formulae of thermoelastic damping and frequency shift are derived. Influences of the plate thickness and vibration frequency on the thermoelastic damping are examined. Phenomena distinct from those of classical theory are observed in the numerical results of thermoelastic damping in micro-plate resonators. These results may bring new insights into the study of thermoelastic damping at submicrometer or nanometer scale.  相似文献   

3.
The vibration phenomenon during pulsed laser heating of micro-beams is investigated. The beam is made of silicon and is heated by a laser pulse with a non-Gaussian temporal profile and with an ultrashort pulse duration of 2ps, which incites vibration due to the thermoelastic damping effect. This coupled thermoelastic problem is solved using an analytical-numerical technique based on the Laplace transformation. The damping ratio and resonant frequency shift ratio of beams due to the air damping effect and the thermoelastic damping effect are also examined and discussed.  相似文献   

4.
This paper presents a general theory of the forced response under convected loading of mono-coupled periodic systems with a single disorder. The general expressions derived have been used to study the response of an infinite periodic beam on simple supports with one of the support spacings different from all the others. Convected harmonic pressure fields and frozen random pressure fields have been considered. Computer studies are presented showing the moment response at supports and the space-time-averaged responses in the disorder and in the nearby periodic beam elements. High response levels can occur due to (i) resonances of the beam length disorder against the stiffness of the attached periodic systems and (ii) hydrodynamic coincidence vibration occurring in the periodic beam. The frequency zones in which these high responses may occur are identified. The high response due to the resonance (ii) is restricted to the vicinity of the disorder, whereas that due to coincidence occurs throughout the system. Computed results show that the highest response levels do not necessarily occur in the beam length disorder, but may occur in one of the nearby periodic beam elements. The dependence of the maximum response levels on the magnitude of the disorder has been investigated. The conditions under which small disorders may be neglected have been pointed out.  相似文献   

5.
Predicting thermoelastic damping (TED) is crucial in the design of high Q MEMS resonators. In the past, there have been few works on analytical modeling of thermoelastic damping in torsion microresonators. This could be related to the assumption of pure torsional mode for the supporting beams in the torsion devices. The pure torsional modes of rectangular supporting beams involve no local volume change, and therefore, they do not suffer any thermoelastic loss. However, the coupled motion of torsion and bending usually exists in the torsion microresonator when it is not excited by pure torque. The bending component of the coupled motion causes flexural vibrations of supporting beams which may result in significant thermoelastic damping for the microresonator. This paper presents an analytical model for thermoelastic damping in torsion microresonators with the coupling effect between torsion and bending. The theory derives a dynamic model for torsion microresonators considering the coupling effect, and approximates the thermoelastic damping by assuming the energy loss to occur only in supporting beams of flexural vibrations. The thermoelastic damping obtained by the present model is compared to the measured internal friction of single paddle oscillators. It is found that thermoelastic damping contributes significantly to internal friction for the case of the higher modes at room temperature. The present model is validated by comparing its results with the finite-element method (FEM) solutions. The effects of structural dimensions and other parameters on thermoelastic damping are investigated for the representative case of torsion microresonators.  相似文献   

6.
Mode conversion and collisionless absorption of electromagnetic wave at the cyclotron harmonic frequencies in an inhomogeneous non-Maxwellian magnetoplasma have been studied. Under suitable energy transfer condition the converted electrostatic wave (plasma wave) either grows or damps. The expressions for the growth/damping rates of this wave have been derived and studied at the cyclotron harmonic frequencies. The effect of the temperature anisotropy on the growth/damping rate of the electrostatic wave at the second cyclotron harmonic frequency has been shown. Growth of such electrostatic waves at ionospheric heights may explain the observed upper hybrid resonance (UHR) echoes and noise bands at the second cyclotron harmonic frequency.  相似文献   

7.
A general approach to solving the problems of nonsteady thermoelasticity for solid bodies in the quasi-static approximation using the Green functions known in the elasticity theory is developed. In the three-dimensional model, analytical expressions are obtained for thermoelastic strains of a body bounded by a plane on one side and exposed to nonsteady heat flows. Analytical expressions for the thermoelastic strain vector components for a body exposed to nonsteady laser radiation are derived. The case of the body surface deformation is analyzed specially. The characteristics of the signals in recording such deformations by an interferometric method or from the variation of the propagation direction of the probe laser beam upon its reflection from the surface are considered.  相似文献   

8.
The present investigation is concerned with the flexural and transversal wave motion in an infinite, transversely isotropic, thermoelastic plate by asymptotic method. The governing equations for the flexural and transversal motions have been derived from the system of three-dimensional dynamical equations of linear theory of coupled thermoelasticity. The asymptotic operator plate model for free vibrations; both flexural and transversal, in a homogenous thermoelastic plate leads to fifth degree and cubic polynomial secular equations, respectively, that governs frequency and phase velocity of various possible modes of wave propagation at all wavelengths. All the coefficients of differential operator have been expressed as explicit functions of the material parameters. The velocity dispersion equations for the flexural and transversal wave motion have been deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate waves. The approximations for long and short waves and expression for group velocity have also been derived. The thermoelastic Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations whose equivalence is established with that of asymptotic method. The dispersion curves for phase velocity, group velocity and attenuation coefficient of various flexural and transversal wave modes are shown graphically for aluminum-epoxy material elastic and thermoelastic plates.  相似文献   

9.
Sensitive devices such as resonant sensors and radio frequency micro-electro-mechanical system (RF-MEMS) filters etc., require high Quality factors (Q-factors) defined as the ratio of total system energy to dissipation that occurs due to various damping mechanisms. Also, thermoelastic damping is considered to be one of the most important factors to elicit energy dissipation due to the irreversible heat flow of oscillating structures in the micro scales. In this study, the Q-factor for thermoelastic damping is investigated in rotating thin rings with in-plane vibration. First, in order to obtain the temperature profile of the model, a heat conduction equation for the thermal flow across the radial direction is solved based on the bending approximation so-called in-extensional approximation of the ring. Using the temperature distribution coupled with a displacement, a governing equation of the ring model can then be derived. Eventually, an eigen-value analysis is performed to obtain the natural frequency of rotating thin rings, and the analytical and numerical values of Q-factors can then be determined by the definition. Furthermore, the effects of rotating speed, dimensions of the ring, mode numbers and ambient temperatures on the Q-factor are discussed in detail.  相似文献   

10.
Dynamics modelling of beams with shunted piezoelectric elements   总被引:1,自引:0,他引:1  
General modelling of a resonant shunting damper has been made from piezoelectric sensor/actuator equations. It is found that an additional damping, which is augmented to a system, is generated by the shunt damping effect. The transfer function of the tuned electrical absorber is derived for both series and parallel shunt circuit. The governing equations and associated boundary conditions are derived using Hamilton's principle. The shunt voltage equation is also derived from the charge generated in PZT due to beam vibration. The frequency response function of the obtained mathematical model is compared with that of the tuned electrical absorber and experimental work. The vibration amplitude is reduced about 15 dB at targeted second mode frequency.  相似文献   

11.
The measurement of radial directional natural frequency and damping ratio in a vehicle tire has been studied. Natural frequencies and damping ratios in the radial direction of various tires, from passenger car tires to truck bus tires, are reported. The radial direction modal parameters of tires subjected to different levels of inflation pressure, have been determined by using a frequency response function method. To obtain the theoretical natural frequency and mode shape, the plane vibration of a tire has been modeled as though it were that of a circular beam. By using the Tielking method that is based on Hamilton’s principle, theoretical results have been determined by considering the rotational velocity, tangential and radial stiffness, radial directional velocity and tension force which is due to tire inflation pressure. The results show that experimental conditions can be considered as the parameters that shift the natural frequency and damping ratio.  相似文献   

12.
Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale circular plate resonators. In this paper, the governing equations of coupled thermoelastic problems are established for axisymmetric out-of-plane vibration of circular plate. Then the analytical expression for thermoelastic damping is obtained. The effects of environmental temperature, plate dimensions and boundary conditions on the thermoelastic damping are studied.  相似文献   

13.
The propagation of thermoelastic waves in homogeneous isotropic plate subjected to stress-free and rigid insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT), Lord-Shulman (LS), Green-Lindsay (GL), and Green-Nagdhi (GN) theories of thermoelasticity. Secular equations for the plate in closed form and isolated mathematical conditions for symmetric and skew-symmetric wave mode propagation in completely separate terms are derived. It is shown that the motion for SH modes gets decoupled from the rest of the motion and remains unaffected due to thermo-mechanical coupling and thermal relaxation effects. The phase velocities for SH modes have also been obtained. The results for coupled and uncoupled theories of thermoelasticity have been obtained as particular cases from the derived secular equations. At short wavelength limits the secular equations for symmetric and skew-symmetric waves in a stress-free insulated and isothermal plate reduce to Rayleigh surface waves frequency equations. Finally, the numerical solution is carried out for aluminum-epoxy composite material and the dispersion curves for symmetric and skew-symmetric wave modes are presented to illustrate and compare the theoretical results.  相似文献   

14.
Appropriate researches on non-linear panel flutter behaviour have been already performed by many authors. In most cases the intent of them focuses on the limit cycle determination, with particular interest towards its amplitude versus the flow dynamic pressure. This paper deals first with a study of all the solutions without damping of beam flutter versus the vibration frequency in non-linear post-critical conditions. A numerical model, which takes into account the influence of the non-linear contribution of the structural forces, due to the axial stretching of the beam, has been implemented. A complete analysis of all the possible non-linear solutions without damping leads to the possibility of characterizing the most appropriate conditions for the presence of the post-critical panel flutter limit cycles. Then the complete model, which also takes into account aerodynamic damping, has been utilized, according to the “Piston Theory”, to verify the state evolution of the fluttering damped beam towards the limit cycle, which is very near to the undamped vibrating beam state with minimum amplitude. This convergence test is an interesting aspect of the numerical results.  相似文献   

15.
Microelectronic mechanical (MEM) beam resonators with high quality factors are always preferred in practical applications. As one of the damping sources, thermoelastic damping (TED) caused by irreversible heat flows is usually considered as an upper limit of the overall damping effect. A new method is proposed in this work to compensate TED by taking advantage of the piezoresistive effect. Such a method is implemented by applying an electrostatic field along the beam length with a negative piezoresistive coefficient. During a resonance, the stretched part of the beam generates a higher electrical power density and thus a higher temperature, while the compressed region leads to a lower temperature. Such a temperature distribution is opposite to the temperature change caused by the thermoelastic effect. The working principle is described by a set of coupled differential equations, which are subsequently solved by the finite element method. The result indicates that the TED in the beam resonators can be completely compensated when the strength of electrical field is tuned to a critical value, namely CEF. The value of the CEF is further analyzed by a series of parametric studies on various material properties and geometric factors.  相似文献   

16.
The governing equations of coupled thermoelastic problems are established for out-of-plane vibration of a circular plate. The analytical expression for thermoelastic damping is obtained. Then the thermoelastic damping is studied under different environmental temperature, plate dimensions and boundary conditions.  相似文献   

17.
Two-dimensional wave propagation is studied in an isothermal linear isotropic elastic material with voids rotating with constant angular velocity based on a theory of elastic material with voids developed by Ie?an (1986) in the thermoelastic context. It is found that there exist three coupled plane waves propagating with distinct phase speeds. The presence of voids and the rotation of the medium are responsible for this coupling. In the absence of voids, the classical longitudinal and transverse waves are found to be coupled through the rotation of the medium. At very large frequency or when the angular rotation is very small relative to the wave frequency the waves are decoupled and propagate with distinct phase speeds. These are (i) a longitudinal wave, (ii) a transverse wave and (iii) a longitudinal wave corresponding to the change in void volume fraction. The first two correspond to the waves of classical elasticity, while the third is new and arises from the presence of the voids. The results are illustrated graphically.  相似文献   

18.
Transverse feedback systems for suppression of transverse coherent beam oscillations are used in modern synchrotrons for preventing the development of transverse instabilities and damping residual beam oscillations after injection. Information on damper systems for the Large Hadron Collider (LHC; CERN, Geneva) and the accelerator complex FAIR (GSI, Darmstadt) is presented. The project for the LHC is being performed at the Laboratory of Particle Physics of the Joint Institute for Nuclear Research in collaboration with CERN. The information concerning the state of the project and the plans of its completion at the LHC is given. The results of the first design activity on transverse damping systems at the SIS100 and SIS300 synchrotrons, to be created in the framework of the new international project FAIR, are presented.  相似文献   

19.
H. Zheng  C. Cai 《Applied Acoustics》2004,65(5):501-520
An optimization study is presented with aim to minimize the sound power radiated by a simply supported, baffled beam with constrained layer damping (CLD) treatment. The governing equation of motion for the calculation of time-harmonic response of a partially CLD covered beam is derived first on the basis of energy approach. Assumed-modes method is used to solve the equation with obtained frequency response functions at different beam locations, which are further used for the calculation of its radiated sound power into half free-space by using Rayleigh’s integral. The optimization problem is then formulated to minimize the sound power radiated by the beam over a frequency range of interest covering multiple resonant modes. A genetic algorithm-based penalty function method is employed to search for the optimum of location/length of the CLD patch and the shear modulus of viscoelastic layer. Optimal results show that for a simply supported beam with a transverse force applied at its central location, it is not necessary to fully cover the structure using CLD patch in order to achieve the largest reduction in the sound power radiated by the beam over a frequency range. With inclusion of the amount of damping material to be minimized, the optimal CLD coverage length is only one-fourth of the base beam’s. Moreover, the optima of three design variables, the CLD coverage length, location on the beam and the shear modulus of viscoelastic layer, are highly relevant to each other.  相似文献   

20.
In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system?s characteristics on this critical amplitude has also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号