首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell–Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.  相似文献   

2.
The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell’s nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin’s method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency–response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.  相似文献   

3.
A finite element analysis for free vibration behaviour of doubly curved stiffened shallow shells is presented. The stiffened shell element is obtained by the appropriate combinations of the eight-/nine-node doubly curved isoparametric thin shallow shell element with the three-node curved isoparametric beam element. The shell types examined are the elliptic and hyperbolic paraboloids, the hypar and the conoidal shells. The accuracy of the formulation is established by comparing some of the authors' results of specific problems with those available in the literature. Numerical results of additional stiffened shells are also presented to study the effects of various parameters of shells and stiffeners such as orientation (i.e., along x -/y -/both x and y directions), type (concentric, eccentric at top and eccentric at bottom) and number of stiffeners, stiffener depth to shell thickness ratio, and aspect ratio, shallowness and boundary conditions of shells on free vibration characteristics.  相似文献   

4.
Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were reduced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations became nonlinear ordinary differential equations with regard to time. The amplitude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.  相似文献   

5.
B. Vanishkorn 《Optik》2011,122(6):506-509
We propose an interesting result of the trapped multiphotons distribution within a fiber Bragg's grating. The multitrapped photons are confined by the potential well, where the motion of photons in a fiber Bragg's grating is affected by the external perturbations, which they are defined as a series of nonlinear parametric in terms of potential energy. This investigation is modeled by using the nonlinear coupled mode equations and under Bragg's resonance condition, where the initial frequency of the light, ω0 is the same value as the Bragg's frequency, ωB. Results obtained have shown that the higher perturbation series represents the potential well is much differed from the equilibrium situation. In applications, the external perturbations on the fiber grating can cause the trapped photons instability, which introduces the escaped photons from the potential well being detected and observed. The potential of applications for quantum encoding device can be performed, which is analyzed and discussed in details.  相似文献   

6.
Linear thermal buckling and free vibration analysis are presented for functionally graded cylindrical shells with clamped-clamped boundary condition based on temperature-dependent material properties. The material properties of functionally graded materials (FGM) shell are assumed to vary smoothly and continuously across the thickness. With high-temperature specified on the inner surface of the FGM shell and outer surface at ambient temperature, 1D heat conduction equation along the thickness of the shell is applied to determine the temperature distribution; thereby, the material properties based on temperature distribution are made available for thermal buckling and free vibration analysis. First-order shear deformation theory along with Fourier series expansion of the displacement variables in the circumferential direction are used to model the FGM shell. Numerical studies involved the understanding of the influence of the power-law index, r/h and l/r ratios on the critical buckling temperature. Free vibration studies of FGM shells under elevated temperature show that the fall in natural frequency is very drastic for the mode corresponding to the lowest natural frequency when compared to the lowest buckling temperature mode.  相似文献   

7.
8.
A set of two-dimensional nonlinear equations for thin electroelastic shells in vibrations with moderately large thickness-shear deformations are obtained from the variational formulation of the three-dimensional equations of nonlinear electroelasticity by expanding the mechanical displacement vector and the electric potential into power series in the shell thickness coordinate and retaining lower order terms. As an example, the equations are used to study nonlinear thickness-shear vibrations of a circular cylindrical shell driven by an electric voltage. Nonlinear amplitude-frequency behavior of electric current near strong resonance is obtained.  相似文献   

9.
This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid–structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.  相似文献   

10.
An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω3, where Ω is the frequency of the excitation), one can identify two critical values ζ1 and ζ2, where ζ2 ? ζ1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F >ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ? F ? ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ? ζ2, the motion decays to zero according to both linear and non-linear theories. When F >ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.  相似文献   

11.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

12.
A method of multiple scales is developed for n-degree-of-freedom weakly nonlinear gyroscopic systems. A general procedure is proposed to establish solvability conditions. The conditions have n different versions whose equivalence cannot be mathematically demonstrated. The procedure is applied to a 4-degree-of-freedom nonlinear gyroscopic system that is the 4-term Galerkin truncation of the governing equation of a pipe conveying fluid flowing in the supercritical speed. The investigation focuses on the primary external resonance in the first frequency ω1 and the two-to-one internal resonance of the first two frequencies ω1 and ω2. The multi-scale analysis shows that the amplitude–frequency response curve in each of the first two modes has a peak bending to the left when ω2>2ω1, two peaks with the same height and the opposite bending directions when ω2=2ω1, and a peak bending to the right when ω2<2ω1. In all those cases, the 4 different versions of the solvability conditions yield same outcomes. The responses in the last two modes uninvolved in the resonances decay to zero exponentially. The numerical integration results are qualitative agreement with the analytical ones.  相似文献   

13.
The effects on squeezing and sub-poissonian of light in fourth harmonic generation (FHG) are investigated based on the fully quantum mechanically up to the first order Hamiltonian interaction in gt, where g is the coupling constant between the modes per second and t is the interaction time between the waves during the process in a nonlinear medium. FHG is a process in which an incident laser beam of the fundamental frequency ω interacts with a nonlinear medium to produce the harmonic frequency at 4ω. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The occurrence of amplitude squeezing effects in both the quadratures of the radiation field in the fundamental mode is investigated and found to be dependent on the selective phase values of the field amplitude. The photon statistics of the pump mode in this process have also been investigated and found to be sub-poissonian in nature. It is found that there is no possibility to produce squeezed light in the harmonic mode up to first-order interaction in gt. Further, we have found the case up to second-order Hamiltonian interaction in gt that the normal squeezing in the harmonic mode is directly depends upon the fourth-order squeezing of the initial pump field. This gives a method of converting higher-order (fourth-order) squeezing into normal squeezing in the harmonic mode and vice versa.  相似文献   

14.
This paper presents a new design of nonlinear dynamic absorber (NDA) using the phenomenon of modal energy transfer between the symmetric mode and the anti-symmetric mode of a curved beam. It can reduce the resonance vibration of a primary structure with a controllable operational frequency range. The energy transfer is initiated by an autoparametric vibration and the excitation force required is lowest when the ratio of the resonance frequencies of the first symmetric mode (ω1) and first anti-symmetric mode (ω2) is close to 2.The resonance frequency of the first anti-symmetric mode (ω2) can be altered to control the operational frequency range. The autoparametric vibration response can be used to create an energy-dissipative region with a controllable bandwidth. It is also possible to create a non-dissipative region in between two dissipative regions. This is useful for providing damping for a conventional dynamic absorber without adding high damping material. The damping is due to the dissipation of energy to anti-symmetric mode. Numerical calculations indicate that the resonance vibration of a primary structure can be successfully reduced using this approach. The results are verified with experimental data.  相似文献   

15.
In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated for different flow velocities. The shell is modelled by Donnell's nonlinear shell theory, retaining in-plane inertia and geometric imperfections; the fluid is modelled as a potential flow with the addition of unsteady viscous terms obtained by using the time-averaged Navier-Stokes equations. A harmonic concentrated force is applied at mid-length of the shell, acting in the radial direction. The shell is considered to be immersed in an external confined quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous water-tunnel experiments. For the same reason, complex boundary conditions are applied at the shell ends simulating conditions intermediate between clamped and simply supported ends. Numerical results obtained by using pseudo-arclength continuation methods and bifurcation analysis show the nonlinear response at different flow velocities for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response; they reveal the occurrence of large-dimension hyperchaos.  相似文献   

16.
Detailed experimental results and analytical results are presented on chaotic vibrations of a shallow cylindrical shell-panel subjected to gravity and periodic excitation. The shallow shell-panel with square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained by in-plain springs. In the experiment, the cylindrical shallow shell-panel with thickness 0.24 mm, square form of length 140 mm and mean radius 5150 mm is used for the test specimen. All edges around the shell boundary are simply supported by adhesive flexible films. First, to find fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force of the shell-panel are measured. These results are compared with the relevant analytical results. Then, geometrical parameters of the shell-panel are identified. Exciting the shell-panel with lateral periodic acceleration, nonlinear frequency responses of the shell-panel are obtained by sweeping the frequency of periodic acceleration. In typical ranges of the exciting frequency, predominant chaotic responses are generated. Time histories of the responses are recorded for inspection of the chaos. In the analysis, the Donnell equation with lateral inertia force is introduced. Assuming mode functions, the governing equation is reduced to a set of nonlinear ordinary differential equations by the Galerkin procedure. Periodic responses are calculated by the harmonic balance method. Chaotic responses are integrated numerically by the Runge-Kutta-Gill method. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. It is found that the dominant chaotic responses of the shell-panel are generated from the responses of the sub-harmonic resonance of order and of the ultra-sub-harmonic resonance of order. By the convergence of the maximum Lyapunov exponent to the embedding dimension, the number of predominant vibration modes which contribute to the chaos is found to be three or four. Fairly good agreements are obtained between the experimental results and the analytical results.  相似文献   

17.
Large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter nonlinear shell theory, which includes in-plane inertia, is used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable and three different formulations for the longitudinal variable; these three different formulations are: (a) Chebyshev orthogonal polynomials, (b) power polynomials, and (c) trigonometric functions. The same formulation is applied to study different boundary conditions; results are presented for simply supported and clamped shells. The analysis is performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 34 generalized coordinates, associated with natural modes of both simply supported and clamped-clamped shells, are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in literature.  相似文献   

18.
张志良 《声学学报》2010,35(6):678-687
解析和数值研究了扬声器锥壳全频段的轴对称强迫振动。给出了典型低频段、典型转点频段和典型高频段的显式位移解析解、特征频率方程和轴向导纳表达式。解析结果与数值计算和实验结果结果非常吻合。在典型低频段,振动完全是纵波型的。在典型转点频段,全域的纵波运动和转点外侧域的横波运动共存,谐振和反谐振频率方程相应呈现出无矩解和弯曲解的耦合特性。在典型高频段,全域的纵波运动和横波运动互相独立,相应出现2组独立的纵波和横波固有频率。   相似文献   

19.
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells’ dynamics.  相似文献   

20.
《Physics letters. A》1997,234(2):122-126
It is shown that an electrostatic electron plasma beat wave is efficiently unstable for a low-frequency and short-wave-length purely growing perturbation (ω, k), i.e. an oscillating two-stream instability in a transversely magnetized hot plasma. The nonlinear response of electrons and ions with strong finite Larmor radius effects has been obtained by solving the Vlasov equation expressed in the guiding-center coordinates. The effect of ion dynamics has been found to play a vital role around ωωci, where ωci is the ion-cyclotron frequency. For typical plasma parameters, it is found that the maximum growth rate of the instability is about two orders higher when ion motion is taken into account in addition to the electron dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号