首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
目前大多数阵风减缓控制方法都是等到飞机到达风场之后才起作用,由此带来了时滞与舵面速率饱和等问题。为了解决这一问题,提出了一种基于风扰动预测的阵风减缓控制系统方案。首先,对风扰动预测技术进行了研究,利用二阶互补滤波器实现了一种基于激光测风雷达获取的阵风信息与其它渠道获取的阵风信息的数据融合算法。其次,以某型民用飞机模型为对象,采用LQR方法设计最优状态调节器使得性能指标最小。接着,引入基于风扰动预测的前馈补偿,使得在未来阵风到达时飞机状态要尽可能保持不变。仿真结果表明,基于风扰动预测的阵风减缓最优控制系统能大幅度地减少阵风干扰对飞机法向过载和俯仰角速度的影响,证明了所设计的控制系统方案的正确性和有效性。  相似文献   

2.
This paper studies the application of using the discrete-time variable structure control method to reduce the vibration of the flexible structure. The structure is subjected to arbitrary, unmeasurable disturbance forces. The concept of independent modal space control is adopted, and the system is studied by the discrete-time model. Here, discrete sensors and actuators are used. We choose the modal filters as the state estimator to obtain the modal co-ordinates and modal velocities for the modal space control. A discrete-time variable structure controller with a disturbance force observer is adopted due to its distinguished robustness property of insensitiveness to parameter uncertainties and external disturbances. The included disturbance force observer can observe the unknown disturbance modal forces, which are used in the discrete-time variable structure control law to cancel out the excitations. The upperbound limitations of the unknown disturbances in the variable structure control, therefore, are no longer needed. The switching surface, in the discrete-time variable structure control system, is designed in an optimal sense. That is, along the switching surface, the cost function of the states is minimized. The investigation of this research focuses on the optimal switching surface design and the control performances of the discrete-time variable structure controller. The performance of estimating the disturbance modal forces and the robustness property of the control law are also discussed.  相似文献   

3.
H-type motion platform with linear motors is widely used in two-degrees-of-freedom motion systems, and one-direction dual motors need to be precisely controlled with strict synchronization for high precision performance. In this paper, a synchronous control method based on model decoupling is proposed. The dynamic model of an H-type air floating motion platform is established and one direction control using two motors with position dependency coupling is decoupled and converted into independent position and rotation controls, separately. For the low damping second-order oscillation system of the rotation control loop, a new fractional order biquad filtering method is proposed to generate an antiresonance peak to improve the phase and control gain of the open loop system, which can ensure system stability and quick attenuation for external disturbances. In the multiple-degree-of-freedom decoupled control loops, a systematic feedback controller design methodology is proposed to satisfy the given frequency domain design specifications; a feed-forward control strategy is also applied to compensate the disturbance torque caused by the platform motion. The simulation and experimental results demonstrate that the proposed synchronization control method is effective, and achieves better disturbance rejection performance than the existing optimal cancellation filtering method and biquad filtering method.  相似文献   

4.
A method is devised to control the current, shot noise and Fano factor in a molecular junction using external fields. The tunneling of electrons through a molecular junction weakly coupled to two leads in the presence of a time-dependent external field is studied using a quantum master equation approach. By combining optimal control theory and assuming a predefined time-dependent current pattern, an external field can be determined which does generate a current pattern close to the requested one. With this approach the current flow pattern in time can be chosen in an almost arbitrary fashion. The same technique can be applied to control the shot noise. For minimizing the current, the corresponding shot noise decreases but does not vanish. By minimizing the shot noise, the corresponding current also approaches zero for the present model of spinless electrons. Within certain limits the proposed strategy even works well for the control of the Fano factor.  相似文献   

5.
In this paper, a simplest fractional-order delayed memristive chaotic system is proposed in order to control the chaos behaviors via sliding mode control strategy. Firstly, we design a sliding mode control strategy for the fractionalorder system with time delay to make the states of the system asymptotically stable. Then, we obtain theoretical analysis results of the control method using Lyapunov stability theorem which guarantees the asymptotic stability of the noncommensurate order and commensurate order system with and without uncertainty and an external disturbance. Finally,numerical simulations are given to verify that the proposed sliding mode control method can eliminate chaos and stabilize the fractional-order delayed memristive system in a finite time.  相似文献   

6.
The analytical method using transfer function or impulse response is very effective for analyzing non-linear systems with localized non-linearities. This is because the number of non-linear equations can be reduced to that of the equations with respect to points connected with the non-linear element. In the present paper, analytical method for the steady state vibration of non-linear system including subharmonic vibration is proposed by utilizing convolution integral and the impulse response. The Galerkin method is introduced to solve the non-linear equations formulated by the convolution integral, and then the steady state vibration is obtained. An advantage of the present method is that stability or instability of the steady state vibration can be discriminated by the transient analysis from convolution integral. The three-degree-of-freedom mass-spring system is shown as a numerical example and the proposed method is verified by comparing with the result by Runge-Kutta-Gill method.  相似文献   

7.
The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.  相似文献   

8.
This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.  相似文献   

9.
Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively, are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged Ito stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged Ito stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.  相似文献   

10.
一阶电路在任意激励下的零状态响应,既可以用卷积积分法,也可以用三要素法进行分析与计算.本文通过对具体电路的计算,以阐明这两种方法的特点.  相似文献   

11.
An importance sampling technique for linear and non-linear dynamical systems subjected to random excitations is presented. Applying a transformation of probability measures, controls are introduced in the system of Itô stochastic differential equations such that the sample trajectories can be influenced in a predetermined way. As is shown, there exist controls resulting in unbiased zero-variance estimators. However, these optimal controls are in general not accessible and have to be replaced by sub-optimal ones derived from an optimization procedure analogous to the first order reliability method known from time-invariant problems. The efficiency of the proposed Monte Carlo simulation technique is demonstrated by estimating first-passage probabilities of typical oscillators under external white-noise excitation.  相似文献   

12.
Due to complexity of the controlled objects, the selection of control strategies and algorithms in vehicle control system designs is an important task. Moreover, the control problem of automobile active suspensions has been become one of the important relevant investigations due to the constrained peculiarity and parameter uncertainty of mathematical models. In this study, after establishing the non-stationary road surface excitation model, a study on the active suspension control for non-stationary running condition was conducted using robust H control and linear matrix inequality optimization. The dynamic equation of a two-degree-of-freedom quarter car model with parameter uncertainty was derived. The H state feedback control strategy with time-domain hard constraints was proposed, and then was used to design the active suspension control system of the quarter car model. Time-domain analysis and parameter robustness analysis were carried out to evaluate the proposed controller stability. Simulation results show that the proposed control strategy has high systemic stability on the condition of non-stationary running and parameter uncertainty (including suspension mass, suspension stiffness and tire stiffness). The proposed control strategy can achieve a promising improvement on ride comfort and satisfy the requirements of dynamic suspension deflection, dynamic tire loads and required control forces within given constraints, as well as non-stationary running condition.  相似文献   

13.
The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory. By using a designed nonlinear compensator mechanism, the system deterministic nonlinearity, parametric uncertainty and disturbance effect can be compensated effectively. The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example. From the Lyapunov stability theory, sufficient conditions for choosing control parameters to guarantee chaos control are derived. Several experiments are carried out, including parameter change experiments, set-point change experiments and disturbance experiments. Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.  相似文献   

14.
针对永磁同步风力发电系统的混沌运动现象, 提出了基于系统Hamilton模型的H控制方案, 使得系统脱离混沌, 运行稳定. 首先将永磁同步风力发电系统模型经过一系列状态变换, 转化为类Lorenz经典数学模型, 并验证了系统在一定参数区域内存在混沌现象. 随后基于Hamilton系统充分利用系统物理结构和无需补偿“无功力”的优点, 建立了混沌系统的Hamilton模型, 并考虑了系统存在外扰情况下的H控制方法. 本文所设计的控制器  相似文献   

15.
Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, can propagate throughout a spacecraft structure and affect the performance of sensitive payloads. To investigate strategies to reduce these dynamic disturbances by means of active control systems, realistic yet simple structural models are necessary to represent the dynamics of the electromechanical system. In this paper a modeling technique which meets this requirement is presented, and the resulting mathematical model is used to develop some initial results on active control strategies. Attention is focused on a mass loaded panel subjected to point excitation sources, the objective being to minimize the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators are employed. The equations of motion are derived by using Lagrange's equation with vibration mode shapes as the Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies are undertaken. These are based on standard linear systems optimal control theory where the resulting controller is implemented by a state observer. It is demonstrated that the proposed modeling technique is a feasible realistic basis for in-depth controller design/evaluation studies.  相似文献   

16.
A power flow equation describing the power flow of electromagnetic waves in a real multimode waveguide represented by a linear multichannel trasmission system exhibiting an attenuation, dispersion, and an interchannel interaction is solved in three iterative ways. In the case of constant attenuation and constant propagation velocities in all channels and for the convolution interchannel interaction, a closed analytical solution of the problem is presented. Interesting forms of the solution, transfer function, and impulse response of the system which enable us to separate and compare the attenuation, dispersion, and coupling effects independently of each other are derived. The transfer function, the impulse response, and excitation conditions for their measurements are further discussed. Relations which make it possible to compare different experimental data obtained under specific excitation conditions in various laboratories are determined. Finally, a linear system with memory in time is studied and it is shown that the real multimode waveguide as a linear multichannel transmission system can be considered as a general linear system with memory in space.  相似文献   

17.
谢林柏  周志刚  张正道 《物理学报》2013,62(18):188702-188702
在混沌系统的同步控制中, 由于混沌系统对初始状态的敏感性, 一旦两个混沌系统的状态初值偏差大, 其状态同步往往需要高幅值的控制律来达到, 这给同步控制实现带来了困难, 并且在同步控制中, 两个混沌系统的初始值通常是未知的. 本文考虑控制输入受限情况下的混沌同步控制问题, 基于符号函数的近似表示式, 将受限的控制输入建模为连续可微的光滑函数, 在每一个采样点将同步控制误差系统近似为局部最优线性模型并设计连续型线性二次型调节器(LQR)最优控制律. 为降低混沌同步控制律的幅值和维持同步系统采样时刻之间的动态, 设计了等价的离散最优控制律, 并通过调整LQR性能加权矩阵值, 确保同步控制信号不会超出其受限的上界. 最后对统一混沌模型下的三种不同混沌系统同步控制进行了仿真研究. 仿真结果验证了方法的有效性. 关键词: 统一混沌模型 符号函数 输入受限 同步控制  相似文献   

18.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

19.
任丽娜  刘福才  焦晓红  李俊义 《物理学报》2012,61(6):60506-060506
针对永磁同步风力发电系统的混沌运动现象, 提出了基于系统Hamilton模型的H控制方案, 使得系统脱离混沌, 运行稳定. 首先将永磁同步风力发电系统模型经过一系列状态变换, 转化为类Lorenz经典数学模型, 并验证了系统在一定参数区域内存在混沌现象. 随后基于Hamilton系统充分利用系统物理结构和无需补偿“无功力”的优点, 建立了混沌系统的Hamilton模型, 并考虑了系统存在外扰情况下的H控制方法. 本文所设计的控制器不仅简单易实现而且反映了系统内部结构以及动态特性的信息. 仿真实验证明了控制器的有效性.  相似文献   

20.
In this paper, a fractional-order active disturbance rejection controller (FOADRC), combining a fractional-order proportional derivative (FOPD) controller and an extended state observer (ESO), is proposed for a permanent magnet synchronous motor (PMSM) speed servo system. The global stable region in the parameter (Kp, Kd, μ)-space corresponding to the observer bandwidth ωo can be obtained by D-decomposition method. To achieve a satisfied tracking and anti-load disturbance performance, an optimal ADRC tuning strategy is proposed. This tuning strategy is applicable to both FOADRC and integer-order active disturbance rejection controller (IOADRC). The tuning method not only meets user-specified frequency-domain indicators but also achieves a time-domain performance index. Simulation and experimental results demonstrate that the proposed FOADRC achieves better speed tracking, and more robustness to external disturbance performances than traditional IOADRC and typical Proportional-Integral-Derivative (PID) controller. For example, the JITAE for speed tracking of the designed FOADRC are less than 52.59% and 55.36% of the JITAE of IOADRC and PID controller, respectively. Besides, the JITAE for anti-load disturbance of the designed FOADRC are less than 17.11% and 52.50% of the JITAE of IOADRC and PID controller, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号