首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CoMCM-41 mesoporous molecular sieves with different amounts of cobalt were synthesized via the microwave irradiation method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and N2 adsorption-desorption technique, and thermal and hydrothermal stabilities of synthesized CoMCM-41 samples were also investigated. Results show that these synthesized materials have typical mesoporous structure of MCM-41. Also, specific surface area and pore volume of synthesized CoMCM-41 decrease with increasing amount of cobalt added, and mesoporous ordering also decreases. When the molar ratio of SiO2:CoO in the starting material is 1.0:0.05, mesoporous ordering of synthesized CoMCM-41 is the best among the four doping contents. On the other hand, results of thermal and hydrothermal tests show that CoMCM-41 after calcination at 750 °C for 3 h or hydrothermal treatment at 100 °C for 5 days still retains mesostructure. However, mesoporous framework is entirely damaged after calcination at 850 °C for 3 h.  相似文献   

2.
The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 °C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 °C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 °C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni2+ components. The NiAl2O4 spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 °C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 °C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N2O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains.  相似文献   

3.
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.  相似文献   

4.
摘要 采用高温水热合成的方法有利于得到具备高水热稳定性的介孔二氧化硅.本研究中,我们利用α-亚麻酸在加热条件下通过胶束内聚合转化为能够耐受高温水热环境的介观模板,利用此硬模板在高温水热条件下直接合成了微孔-介孔二氧化硅及掺铝介孔二氧化硅.采用了不同的表征手段如X射线衍射(XRD),氮气吸附,透射电镜等手段对材料进行了表征. 实验结果表明,制得的材料在沸水中处理5天后,仍能保持670m2 g-1的比表面积.透射电镜结果和NLDFT孔径分析结果显示,材料同时具备介孔和微孔结构.29Si MAS NMR谱图显示,完全缩聚的Q4型硅为材料中主要的硅组分,这解释了材料的高水热稳定性.  相似文献   

5.
TiO2(B) nanowires and TiO2 anatase nanowires were synthesized by the hydrothermal processing in 10 M NaOH aq. at 150 °C followed by the post-heat treatment at 300-800 °C. As-synthesized Na-free titanate nanowires (prepared by the hydrothermal treatment and repeated ion exchanging by HCl (aq.) were transformed into TiO2(B) structure with maintaining 1-D morphology at 300-500 °C, and further transformed into anatase structure at 600-800 °C with keeping 1-D shape. At 900 °C, they transformed into rod-shaped rutile grains. Microstructure of these 1-D TiO2 nanomaterials is reported.  相似文献   

6.
The aim of this paper is to evaluate the ability of the mesoporous silica SBA-15 to adsorb polyphenols from red wine. The mesoporous molecular sieve silica SBA-15 was hydrothermally synthesized in acidic media and characterized by SAXRD, BET, EDX and SEM. The adsorption behavior of mesoporous silica SBA-15 was investigated at 5 °C for 24 h using an adsorbent dose of 8 g SBA-15 L−1 red wine. The total polyphenols content expressed as mg of gallic acid equivalents (GAE L−1) was estimated from the standard curve of gallic acid (absorbance at 280 nm). HPLC chromatograms of methanolic extract from mesoporous SBA-15 at 256, 280, 324, and 365 nm exhibits the strong retention of quercetin and cis-resveratrol and a reasonable retention of trans-resveratrol, catechin, epicatechin, rutin, and phenolic acids (meta- and para-hydroxybenzoic, vanillic, caffeic, syringic, salicylic and para-coumaric acids).  相似文献   

7.
Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH)2 and CuCO3 and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 °C), hydrothermally (150 °C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 °C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 °C itself. Reductive decomposition yields a composite of Cu2O and Al(OH)3, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu2O (<1 μm).  相似文献   

8.
Microporous zeolites are widely used commercial catalysts, but their applications are intrinsically limited by their small channel diameters. Recent progress in solving this is used to ordered mesoporous materials such as MCM-41, HMS and SBA-15. These mesoporous materials have pore diameters of 30–60 Å and exhibit catalytic properties for the catalytic conversion of bulky reactants, but unfortunately, when compared with microporous zeolites, the catalytic activity and hydrothermal stability are relatively low, which severely hinders their practical applications. The relatively low catalytic activity and hydrothermal stability can be attributed to the amorphous nature of the mesoporous walls. We review here that the assembly of preformed zeolite precursors with surfactants can synthesize a series of ordered mesoporous materials, which include (1) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in alkaline media; (2) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in strongly acidic media; (3) hydrothermally stable mesoporous titanosilicates with catalytically active titanium species in oxidations; (4) hydrothermally stable mesoporous ferrisilicates. This work would open a door for the industrial application of mesoporous materials as catalysts for large molecules.  相似文献   

9.
Titanate nanoribbons were prepared via a hydrothermal treatment of rutile-type TiO2 powders in a 10 M NaOH solution at 200 °C for 48 h. The as-prepared titanate nanoribbons were then hydrothermally post-treated at 150 °C for 12-36 h. The titanate nanoribbons before and after hydrothermal post-treatment were characterized with FESEM, XRD, TEM, UV-VIS and nitrogen adsorption-desorption isotherms. The results showed that the hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO2, but also was beneficial to the removal of Na+ ions remained in the titanate nanoribbons. After hydrothermal post-treatment, the TiO2 samples retained the one-dimensional structure feature of the titanate nanoribbons and showed an obvious increase in the specific surface area and the pore volume.  相似文献   

10.
A solution based wet chemistry approach has been developed for synthesizing Li2SiO3 using LiNO3 and mesoporous silica as starting materials at 550 °C. A reaction path where NO and O2 are formed as side-products is proposed. The crystals synthesized exhibit dendritic growth where the as-prepared nanodendrite is a typical 1-fold nanodendrite composed of one several microns long and some tenth of nanometers wide trunk with small branches, which are several hundreds of nanometers long and up to 70 nm in diameter. The effect of the structure of the mesoporous silica for the final morphology is discussed.  相似文献   

11.
New silarylene-siloxane-acetylene polymers have been synthesized by coupling reactions employing 1,3-bis(p-ethynylphenyl)-1,1,3,3-tetraphenyldisiloxane (3) as the key monomer. Their thermal properties have been evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). All of the new polymers showed good thermal stability, with their temperatures at 5% weight loss (Td5) being higher than 540 °C under nitrogen and higher than 460 °C in air. Their char yields at 1000 °C under N2 were above 80%. Broad exothermic peaks, attributable to reaction of the acetylenic units, were observed by DSC analysis in the temperature range 270-450 °C.  相似文献   

12.
Mesoporous silica, prepared in basic conditions, has been loaded (20% weight) with 12-molybdophosphoric (PMo) or 12-tungstophosphoric (PW) acid and calcined at different temperatures ranging between 250 and 550 °C. The samples have been characterised by N2 adsorption-desorption at −196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-visible diffuse reflectance, Raman spectroscopy and temperature programmed reduction (TPR). The acidity and catalytic activity have been, respectively, examined by monitoring the adsorption of pyridine and 2-butanol by FT-IR spectroscopy. The results indicate that PW and PMo acids are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles. While PMo retains its Keggin structure up to 550 °C, PW decomposes at this temperature into crystalline WO3 and phosphorous oxides. In both cases, the morphology, hexagonal symmetry and long-range order observed for the support are preserved with calcination up to 450 °C. The Brönsted-type acid sites found in all samples, whose surface concentration decreases as the calcination temperature increases, are responsible for the selective formation of cis-butene detected upon adsorption of 2-butanol. The sample containing PW calcined at 450 °C also shows selectivity to methyl ethyl ketone.  相似文献   

13.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   

14.
Acetate containing nickel-zinc hydroxysalts (LHS-Ni-Zn) have been synthesized by coprecipitation and hydrothermal treatment. The acetate anions were exchanged with PW12O403− anions, and optimum conditions to attain the maximum level of W in the compound have been identified. The W intercalated compound was characterized by powder X-ray diffraction, FT-IR spectroscopy, thermogravimetric and differential thermal analyses, scanning electron microscopy and transmission electron microscopy.The exchange of LHS-Ni-Zn with PW12O403− at pH=3 for 72 h leads to a solid with a basal spacing of 9.62 Å and a W content (weight) of 37%. The hydrothermal treatment at 90 °C for 24 h increases this value to 48% with a W/Zn molar ratio of 1.38, which corresponds to a layered compound with lacunary tungstophosphate anions in the interlayer space. The intercalated solid is stable up to 250 °C, the layer structure collapses on dehydroxylation and amorphous compounds were identified at 500 °C. Two crystalline phases, NiO (rock salt) and a solid solution (Zn1−xNix)WO4, were identified by powder X-ray diffraction at high temperature (ca. 1000 °C).  相似文献   

15.
Highly crystalline rhombohedral boron nitride (r-BN) with regular triangular shapes were synthesized on a large scale in a stainless steel autoclave using B2O3 and NaNH2 as reactants at 600 °C for 6 h. The as-prepared BN triangular nanoplates have an average edge length of 400 nm and the thickness of about 60 nm. The photoluminescence measurements reveal that the r-BN products show strong yellow-green emission. The as-prepared r-BN has potential optical and optoelectronic applications in high temperature devices due to its excellent thermal stability and anti-oxidation properties.  相似文献   

16.
Nanosized-Ta2O5 powder photocatalyst was successfully synthesized by using sol-gel method via TaCl5 butanol solution as a precursor. Ta2O5 species can be formed under 500 °C via the decomposition of the precursor. The crystalline phase of Ta2O5 powder photocatalyst can be obtained after being calcined above 600 °C for 4 h. The crystal size and particle size of Ta2O5 powder photocatalyst was about 50 nm. A good photocatalytic performance for the degradation of gaseous formaldehyde was obtained for the nanosized-Ta2O5 powder. The Ta2O5 powder formed at 700 °C for 4 h and at 650 °C for 12 h showed the best performance. The calcination temperature and time play an important role in the crystallization and photocatalytical performance of nanosized-Ta2O5 powder.  相似文献   

17.
A novel ceria (CeO2)–ordered mesoporous carbon (OMC) modified electrode for the sensitive amperometric determination of hydrazine was reported. CeO2–OMC composites were synthesized via a hydrothermal method at a relatively low temperature (180 °C) and characterized by scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The CeO2–OMC modified glassy carbon electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and indicated good electrocatalytic effect to the oxidation of hydrazine. Under the optimized conditions, the present sensor could be used to measure hydrazine in wide linear range from 40 nM to 192 μM (R2 = 0.999) with a low detection limit of 12 nM (S/N = 3). Additionally, the sensor has been successfully applied to detect hydrazine in real water samples and the recoveries were between 98.2% and 105.6%. Eventually, the sensor exhibited an excellent stability and reproducibility as a promising method for determination of hydrazine.  相似文献   

18.
The controlled hydrolysis of fluoro(2-methylbutan-2-oxy)di(pentan-2,4-dionato)tin followed by annealing at 400-550 °C gave conductive mesoporous F-doped SnO2 materials. The materials consist of a porous network of aggregated nanoparticles, the mesoporosity observed corresponding to the interparticle space. Tuning of the annealing temperature enabled us to prepare materials with surface areas ranging from 70 to 150 m2 g−1, with an average pore size comprised between 50 and 100 Å and with a mean particle diameter ranging from 50 to 120 Å. Resistivities as low as 1-2 Ω cm were measured for the sample treated at 550 °C which contained 2-3 at.% of fluorine. This powder reacted with 3-(6-trihex-1-ynylstannylhexyl)perylene to furnish a dye-sensitized F-doped SnO2 mesoporous materials. An intensity-dependent photocurrent was produced under blue light illumination using the cavity microelectrode (CME) technique. With an aqueous NaBr solution, the photopotential reaches 700 mV, a value slightly higher than that found for an undoped sensitized SnO2 powder (∼600 mV).  相似文献   

19.
TiN nanorods were synthesized using electrospinning technique followed by thermolysis in different atmospheres. A dimethyl formamide-ethanol solution of poly-(vinyl pyrrolidone) and Ti (IV)-isopropoxide was used as the electrospinning precursor solution and as-spun nanofibers were calcined at 500 °C in air to generate TiO2 nanofibers. Subsequently, a conversion from TiO2 nanofibers to TiN nanorods was employed by the nitridation treatment at 600∼1400 °C in ammonia atmosphere. A typical characteristic of the final products was that the pristine nanofibers were cut into nanorods. The conversion from TiO2 to TiN was realized when the nitridation temperature was above 800 °C. As-prepared nanorods were composed of TiN nano-crystallites and the average crystallite size gradually increased with the increase of the nitridation temperature. Electrochemical properties of TiN nanorods showed strong dependence on the nitridation temperature. The maximum value of the specific capacitance was obtained from the TiN nanorods prepared at 800 °C.  相似文献   

20.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号