首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Monodisperse magnetic composite particles (MCP) were prepared and characterized for a study of magnetic field-responsive fluids. Magnetic composite particles used are iron oxide-coated polymer composite particles, which were synthesized through in situ coating of iron oxide onto pre-existing polymer particles by the reduction of ferrous fluids. For a uniform and bulk coating of iron oxide, the porous structure was introduced into the substrate polymer particles through a two-step seeded polymerization method. Moreover, surface cyano-functionality was born from acrylonitrile unit of substrate polymer and it played an important role in obtaining successful uniform coating. The structure of the composite particle was analyzed by using a thermo gravimetric analysis (TGA) and a X-ray diffraction (XRD) analysis. The magnetization property of the particle was also observed. Then, the rheological properties of monodisperse magnetorheological (MR) suspensions of magnetic composite particles were examined under a magnetic field using a parallel-plate type commercial rheometer. From the rheological measurements, it was found that MR properties of the magnetic composite suspensions are dependent on the iron oxide content and the fluid composition.  相似文献   

2.
New wormhole-like mesoporous TiO2 material has been synthesized through a convenient sol-gel method in the presence of a Schiff base secondary amine hexadecyl-2-pyrrole-methylamine (HPMA) containing chelating donor sites as template or structure directing agent (SDA). SDA molecules can be easily removed from the composite to generate mesoporosity and upon removal of the SDA molecule, this mesoporous TiO2 material showed very high surface area (480 ± 10 m2/g) with an average pore diameter of 2.57 ± 0.05 nm. When Rose Bengal dye is entrapped inside the nanopores of this material, it showed a drastic enhancement (ca. 40-folds) in the photoconductivity vis-à-vis mesoporous TiO2 alone under white light illumination.  相似文献   

3.
Mesoporous silica particles with narrow size distribution were obtained by a seeded growth process. Depending on the size of seeds and on the time of addition of reactants, the size of particles can be varied between 300 and 1000 nm. In a second step the dye fluorescein isothiocyanate can be embedded. The structure of these new silica particles with low density was investigated by SEM, XRD, BET, and confocal microscopy.  相似文献   

4.
Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.  相似文献   

5.
邱星屏 《中国化学》2000,18(6):834-837
Magnetic nanoparticles with average diameter in the range of 6.4-8.3 nni have been synthesized by a chemical co-precipitation of Fe(Ⅱ)and Fe(Ⅲ)salts in 1.5 M NH4OH solution.The size of the magnetic particles is dependent on both temperature and the ionic strength of the iron ion solutions.The magnetic particles formed at higher temperature or lower ionic strength were slightly larger than those formed at lower temperature or higher ionic strength respectively.In spite of the different reaction conditions,all the resultant nanoparticles are nearly spherical and have a similar crystalline structure.At 300 K,such prepared nanoparticles are superparam-agnetic.The saturation magnetizations for 7.8 and 6.4 nm particles are 71 and 63 emu/g respectively,which are only ~ 20-30% less than the saturation magnetization(90 emu/g)of bulk Fe3O4 Our results indicated that a control of the reaction conditions could be used to tailor the size of magnetic nanoparticles in free precipitation.  相似文献   

6.
Synthesis of monodisperse,magnetic latex particles with polystyrene core   总被引:1,自引:0,他引:1  
A novel method for producing monodisperse, submicron-sized magnetic latex particles is described. The method provides coating of polymer particles with surface-modified magnetic particles during soap-free polymerization. Experiments were performed with styrene monomer, potassium persulfate initiator, Fe 3O 4 magnetic particles, and silane-coupling reagents of methacryloxypropyltrimethoxysilane (MPTMS) and methacryloxypropyldimethoxysilane (MPDMS). The morphology of the magnetic particles depended on the silane-coupling reagents. Use of the tri-functional coupling reagent MPTMS produced particles having a disk-like or concave-like shape, whereas use of the di-functional coupling reagent MPDMS produced spherical particles that had a coefficient of variation of 4.4%, which was much smaller than the standard criteria of monodispersity, 10%.  相似文献   

7.
Micron-sized hollow silica spheres whose shells are made up of mesocellular silica foams(MCFs) have been synthesized by one-pot sol-gel method in benzene/water/P123 emulsion.The material is characterized with SEM,TEM,BET and ~(29)Si MAS NMR. The results show that the MCFs of the unique shell of hollow silica spheres were connected by large windows with a narrow distribution of~10 nm in diameter,the inner space of the hollow sphere is accessible.And the formation mechanism of the hollow silica spheres is ...  相似文献   

8.
Micron‐sized monodisperse superparamagnetic polyglycidyl methacrylate (PGMA) particles with functional amino groups were prepared by a process involving: (1) preparation of parent monodisperse PGMA particles by the dispersion polymerization method, (2) chemical modification of the PGMA particles with ethylenediamine (EDA) to yield amino groups, and (3) impregnation of iron ions (Fe2+ and Fe3+) inside the particles and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer particles. The resultant magnetic PGMA particles with amino groups were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffractometry (XRD), and vibrating sample magnetometry (VSM). SEM showed that the magnetic particles had an average size of 2.6 μm and were highly monodisperse. TEM demonstrated that the magnetite nanoparticles distributed evenly within the polymer particles. The existence of amino groups in the magnetic polymer particles was confirmed by FTIR. XRD indicated that the magnetic nanoparticles within the polymer were pure Fe3O4 with a spinel structure. VSM results showed that the magnetic polymer particles were superparamagnetic, and saturation magnetization was found to be 16.3 emu/g. The Fe3O4 content of the magnetic particles was 24.3% based on total weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3433–3439, 2005  相似文献   

9.
Using magnetic layered double hydroxide (MLDH) as carrier of fluorescein (FLU), a fluorescent composite of MLDH-FLU was prepared via intercalation reaction of ion change. The crystal properties of MLDH-FLU were investigated through XRD, IR, TEM and TG-DSC characterization. It is shown that the crystal type of MLDH-FLU composite matched well with R-hexagonal crystal system of MLDH, with crystal cell parameters of a, c and channel height h equal to 0.3199, 2.411 and 0.3267 nm respectively. The superabundant pigment adsorbed outside the composite should be cleared before interference with cells, but excessive wash would decrease stability and cause crystal phase transformation of MLDH.  相似文献   

10.
Monodisperse porous polymer particles in the size range of 10 μm in diameter were prepared via seeded emulsion polymerization. Linear polymer (polystyrene seed) or a mixture of linear polymer and solvent or nonsolvent were used as inert diluents. The pore diameters of these porous polymer particles were on the order of 1000 Å with pore volumes up to 0.9 mL/g and specific surface areas up to 200 m2/g. The physical features of the porous polymer particles depended on the diluent type and the crosslinker content, as well as the molecular weight of polymer seed particles. By varying the molecular weight of the linear polymer, monodisperse porous polymer particles with different pore size distribution could be synthesized. Polymer seed with a low degree of crosslinking instead of linear polymer could also be used to prepare monodisperse porous polymer particles with smaller pore volume and pore size.  相似文献   

11.
Mesoporous aluminosilicate spheres of 0.3–0.4 Μm diameter, with different Si/Al ratios, have been prepared by surfactant templating. Surface area of these materials is in the 510–970 m2 g-1 range and pore diameter in the 15–20 ? range.  相似文献   

12.
Bi Y  Pan X  Chen L  Wan QH 《Journal of chromatography. A》2011,1218(25):3908-3914
Although magnetic field-flow fractionation (MgFFF) is emerging as a promising technique for characterizing magnetic particles, it still suffers from limitations such as low separation efficiency due to irreversible adsorption of magnetic particles on separation channel. Here we report a novel approach based on the use of a cyclic magnetic field to overcome the particle entrapment in MgFFF. This cyclic field is generated by rotating a magnet on the top of the spiral separation channel so that magnetic and opposing gravitational forces alternately act on the magnetic particles suspended in the fluid flow. As a result, the particles migrate transversely between the channel walls and their adsorption at internal channel surface is prevented due to short residence time which is controlled by the rotation frequency. With recycling of the catch-release process, the particles follow saw-tooth-like downstream migration trajectories and exit the separation channel at velocities corresponding to their sedimentation coefficients. A retention model has been developed on the basis of the combined effects of magnetic, gravitational fields and hydrodynamic flow on particle migration. Two types of core-shell structured magnetic microspheres with diameters of 6.04- and 9.40-μm were synthesized and used as standard particles to test the proposed retention theory under varying conditions. The retention ratios of these two types of particles were measured as a function of magnet rotation frequency, the gap between the magnet and separation channel, carrier flow rate, and sample loading. The data obtained confirm that optimum separation of magnetic particles with improved separation efficiency can be achieved by tuning rotation frequency, magnetic field gradient, and carrier flow rate. In view of the widespread applications of magnetic microspheres in separation of biological molecules, virus, and cells, this new method might be extended to separate magnetically labeled proteins or organisms for multiplex analyte identification and purification.  相似文献   

13.
Xiaoxiao He  Dilan Qin  Weihong Tan 《Talanta》2007,72(4):1519-1526
Cy5 dye is widely used as a biomarker in the research fields of life science because of its excitation at wavelengths above 600 nm where autofluorescence of bio-matter is much reduced. However, Cy5 dye could not be encapsulate into silica directly to form stable nanoparticles by using of the traditional methods. In this paper, an improved method had been developed to prepare Cy5 dye doped core-shell silica fluorescent nanoparticles (SFNPs), employing biomolecules conjugated Cy5 as the core material and silica coating produced from the hydrolysis TEOS (tetraethyl orthosilicate) in the water-in-oil microemulsion. To obtain stable Cy5 dye doped SFNPs with core-shell structure, five kinds of biomolecules with different iso-electric point (pI) have been selected to conjugate Cy5 for preparation of core-shell SFNPs. Results demonstrated that very bright and photostable Cy5 doped core-shell SFNPs could be both prepared by use of positive polysine conjugated Cy5 or IgG conjugated Cy5 as the core material, respectively. IgG conjugated Cy5 doped core-shell SFNPs was selected as a demonstration to be characterized and applied as a near-infrared fluorescent marker in cell recognition. The results showed that Cy5 doped core-shell SFNPs prepared by conjugating with a positive biomolecules IgG as the core material were luminescent and stable. About 110 Cy5 dye molecules could be doped in one nanoparticle with size of 42 ± 5 nm. The breast cancer cells had been selectively recognized by use of the near-infrared fluorescent marker based on the Cy5-IgG doped core-shell SFNPs. And the results demonstrated that this Cy5 doped core-shell SFNPs fluorescence marker was superior to the pure Cy5 dye marker for cell recognition in photostability and detection sensitivity.  相似文献   

14.
A mesoporous electrochemical active material NiO with face center cubic structure has been synthesized using supramolecular as template and urea as hydrolysis-controlling agent. The synthesized product was characterized physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and Brunauer–Emmett–Teller-specific surface area measurement. Electrochemical characterization was performed using cyclic voltammetry and chronopotentiometry in 6 mol/l KOH aqueous solution electrolyte. A specific capacitance of approximately 327 F/g was obtained by annealing the sample at 350 °C. To get a better understanding of the effect of supramolecular template on improving the structure property and electrochemical performance, a compared experiment was also carried out in this work.  相似文献   

15.
A series of novel aza‐diisoindolmethine dyes 9 with six different aryl and heteroaryl groups at the indole moiety have been synthesized by the addition of aryl Grignard compounds to phthalodinitrile and subsequent reaction with formamide. A plausible reaction mechanism, through a Leuckart–Wallach‐type reduction has been confirmed by means of DFT calculations of the related transition and intermediate states. The corresponding boron difluoride complexes ( 10) of 9 were prepared in a subsequent reaction step and the spectroscopic and electrochemical properties of 9 and 10 have been investigated both experimentally and theoretically. The aza‐diisoindolmethines 9 exhibit an absorption maximum in the range from 615 to 720 nm, whereas the complexes 10 show a bathochromically shifted absorption maximum between 681 and 793 nm. Measurements of 9 and 10 by cyclic voltammetry display fully reversible redox waves for the reduction and oxidation with higher potentials for 10 . From the measured redox potentials, the HOMO and LUMO energy levels were calculated for 9 and 10 . The frontier orbital energies, the energies of the absorption bands, as well as the orbitals involved in the absorption process were calculated with DFT and compared to the measured results of 9 and 10 . The absorption maximum can be related to an intense HOMO–LUMO transition and the more‐pronounced stabilization of the LUMO upon complexation is the origin of the bathochromic shift of the absorption. Additionally, single‐crystal structures for two species, 10 d and 10 f , are reported.  相似文献   

16.
Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.  相似文献   

17.
Ding J  Gao Q  Luo D  Shi ZG  Feng YQ 《Journal of chromatography. A》2010,1217(47):7351-7358
A new sorbent for magnetic solid-phase extraction, n-octadecylphosphonic acid modified mesoporous magnetic nano particles (OPA/MMNPs), was easily prepared via a two-step strategy. MMNPs were synthesized by a solvent-thermal process, and then OPA was grafted onto the surface of MMNPs via the strong Lewis acid/base interaction. The resultant material was characterized by transmission electron microscopy, tensionmeter, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, elemental analysis, and nitrogen adsorption analysis. The results demonstrated that the particles exhibited mesoporous structure, superparamagnetic (57emu/g) and extremely hydrophobic (water contact angle of 136°) properties. To evaluate the extraction performance of the resultant sorbent, polycyclic aromatic hydrocarbons (PAHs) were chosen as model analytes. The extraction conditions were optimized. Based on these, a rapid, convenient and efficient method for the determination of PAHs in water samples was established by combination of magnetic solid-phase extraction and gas chromatography-mass spectroscopy. The linearity range of proposed method was 0.2-100μg/L with correlation coefficients (R(2)) of 0.9726-0.9970. The intra- and inter-day relative standard deviations (RSDs) were less than 17.6%. Batch-to-batch reproducibility was acceptable with RSD values less than 12.1%.  相似文献   

18.
逄杰斌  丘坤元  危岩 《中国化学》2000,18(5):693-697
Mesoporous silica materials with pore diameters of 2-5 nm have been prepared using ascorbic acid as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate,followed by removing the ascorbic acid compound by extraction with ethanol.Characterization results from nitrogen sorption isotherm,powder X-ray diffraction and transmission electron microscopy indicate that the materials have large specific surface areas (e.g.1000 m2/g) and pore volumes (e.g.0.8 cm3/g).The rnesoporosity is arisen from interconnecting disordered wormlike channels and pores with relatively broad size distributions.As the ascorbic acid concentration is increased,the pore diameters and pore volumes of the materials increase.  相似文献   

19.
The emulsion polymerization of large MMA/BA copolymer particles with narrow particle size distributions and core-shell structure is described. A series of sequential seeded growth emulsion polymerizations were used to obtain monodisperse particles with diameters of at least 3 μm, at 30% solids contents. Because the core and shell polymers used here were chemically similar, core-shell structures could not be verified by differential staining tech-niques. Core-shell structure was demonstrated by minimum film-forming temperature studies and by scanning electron microscopy in conjunction with energy dispersive x-ray analysis, using chlorine-labeled core polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Using the stepwise heterocoagulation concept, fluorescent and highly magnetic submicronic core-shell polymer particles were prepared. For this purpose a negatively charged oil-in-water magnetic emulsion was first modified by adsorbing the poly(ethyleneimine) (PEI). Secondly, low glass transition temperature (T g=10°C) anionic film-forming nanoparticles were adsorbed onto the cationic magnetic droplets. Finally the encapsulation was induced by heating the heterocoagulates above the T g of the film-forming nanoparticles. To produce labeled magnetic particles, fluorescent nanoparticles and film-forming nanoparticles were simultaneously adsorbed. PEI adsorption was investigated. Also investigated was the influence of the amount of film-forming nanoparticles and fluorescent nanoparticles on the encapsulation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号