首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

2.
A pair of 1.5 μm semiconductor laser frequency standards have been developed for optical telecommunications use, stabilised to transitions of 12C2H2 and 13C2H2, using cavity-enhanced Doppler-free saturation absorption spectroscopy. The absolute frequencies of 41 lines of the ν1 + ν3 band of 12C2H2, covering the spectral region 1520-1545 nm, have been measured by use of a passive optical frequency comb generator, referenced to 13C2H2 transitions of known frequency. The mean experimental uncertainties (coverage factor k = 1) of the frequency values are 3.0 kHz (type A) and 10 kHz (type B). Improved values of the band origin ν0, rotational constants B′ and B″, and centrifugal distortion coefficients D′, D″, H′, and H″ are presented.  相似文献   

3.
Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1−x)TeO2+(x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements.Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level were observed. Integrated absorption cross-section of each band except that of 3H5 level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm (1G43H6 transition), 651 nm (1G43H4 transition) and 800 nm (1G43H5 transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions.The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.  相似文献   

4.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

5.
The effects of surface preparation and illumination on electric parameters of Au/InSb/InP(100) Schottky diode were investigated, in the later diode InSb forms a fine restructuration layer allowing to block In atoms migration to surface. In order to study the electric characteristics under illumination, we make use of an He-Ne laser of 1 mW power and 632.8 nm wavelength. The current-voltage I(VG), the capacitance-voltage C(VG) measurements were plotted and analysed. The saturation current Is, the serial resistance Rs and the mean ideality factor n are, respectively, equal to 2.03 × 10−5 A, 85 Ω, 1.7 under dark and to 3.97 × 10−5 A, 67 Ω, 1.59 under illumination. The analysis of I(VG) and C(VG) characteristics allows us to determine the mean interfacial state density Nss and the transmission coefficient θn equal, respectively, to 4.33 × 1012 eV−1 cm−2, 4.08 × 10−3 under dark and 3.79 × 1012 eV−1 cm−2 and 5.65 × 10−3 under illumination. The deep discrete donor levels presence in the semiconductor bulk under dark and under illumination are responsible for the non-linearity of the C−2(VG) characteristic.  相似文献   

6.
The temperature dependences of 2H NMR spectra and spin-lattice relaxation time T1 have been measured for paramagnetic [Mn(H2O)6][SiF6]. The obtained 2H NMR spectra were simulated by considering the quadrupole interaction and paramagnetic shift. The variation of the spectra measured in phase III was explained by the 180° flip of water molecules. The activation energy Ea and the jumping rate at infinite temperature k0 for the 180° flip of H2O were obtained as 35 kJ mol−1 and 4×1014 s−1, respectively. The spectral change in phases I and II was ascribed to the reorientation of [Mn(H2O)6]2+ around the C3 axis where the Ea and k0 values were estimated as 45 kJ mol−1 and 1×1013 s−1, respectively. From the almost temperature independent and short T1 value, the correlation time for electron-spin flip-flops, τe, and the exchange coupling constant J were obtained as 3.0×10−10 s and 2.9×10−3 cm−1, respectively. The II-III phase transition can be caused by the onset of the jumping motion of [Mn(H2O)6]2+ around the C3 axis.  相似文献   

7.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

8.
Tatsuya Konishi 《Surface science》2007,601(18):4122-4126
We studied the quantized conductance behavior of mechanically fabricated Pt nanoconstrictions under electrochemical potential control in H2SO4, Na2SO4, and NaOH solutions. There was no clear feature in the conductance histogram, when the electrochemical potential of the nanoconstrictions was kept at the double layer or the under potential deposited hydrogen potential. At the hydrogen evolution potential, the conductance histograms showed clear features around 0.5 and 1 G0 in the H2SO4 solution. In Na2SO4, and NaOH solutions, a 1 G0 feature with a shoulder appeared in the histogram. The quantized conductance behavior of Pt nanoconstrictions could be controlled by the electrochemical potential and solution pH.  相似文献   

9.
The six independent elastic constants (C11, C12, C13, C33, C44, and C66) of single-crystal MgF2 in the rutile structure have been measured by Brillouin spectroscopy at room temperature from ambient conditions to 7.4 GPa. Measurements were performed on two monocrystals with perpendicular faces, (001) and (100). A quasi-linear fit from finite strain theory was applied to the experimental data revealing the pressure dependence of the six elastic constants of MgF2. The shear modulus CS=1/2(C11C12), and the aggregate shear (Voigt–Reuss–Hill) modulus G show a softening with increasing pressure, indicating the approach of the rutile-to-CaCl2-type structural phase transition at P~9 GPa. The adiabatic bulk modulus (Reuss average) and its pressure derivative have been determined: K0S=105.1±0.3 GPa, (∂K0S/∂P)T=4.14±0.05. The pressure–volume equation of state of MgF2 was computed self-consistently from the Brillouin data. Our results are in good agreement with X-ray diffraction data. As the phase transition is approached, MgF2 becomes strongly anisotropic and develops partially auxetic behavior (a negative Poisson's ratio in certain directions).  相似文献   

10.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

11.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

12.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

13.
P-doped TiO2 nanoparticles were synthesized through hydrolysis and condensation of Ti(OC2H5)4 with H3PO4 additions. Effects of [H3PO4]/[Ti(OC2H5)4] molar ratios on the anatase-to-rutile phase transformation, crystallite sizes, surface areas, and photocatalytic abilities of the gel-derived P-doped TiO2 were investigated. The P-doped TiO2 nanoparticles prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 were composed of anatase monophase even at 900 oC and possessed very strong photocatalytic ability. Kinetic studies on the P-doped TiO2 to photocatalytically decompose methylene blue under irradiation of 365 nm UV light found that the P-doped TiO2 prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 and calcined at 800 oC had the specific reaction rates, at 25 °C, kA,m=0.76 m3/(kg min) (based on the mass of P-doped TiO2) and kA,BET=46.2×10−6 m/min (based on the BET surface area of P-doped TiO2), which is superior to the performance of a commercial product, P25 (kA,m=0.22 m3/(kg min) and kA,BET=4.8×10−6 m/min).  相似文献   

14.
We performed a hybrid density functional theory calculation for the successive adsorption of nitrous oxide (N2O) on Si(1 0 0)-Si9H12Ox (x = 0 and 1) cluster surfaces to elucidate N2O decomposition and the subsequent surface oxidation processes. N2O decomposed into N2 and O fragments, and the latter fragment inserted into either surface-dimer bonds or back-bonds with similar activation barriers on both the clean and partially oxidized Si surfaces. The Si9H12 cluster surface was eventually oxidized to five distinct structures of Si9H12O2.  相似文献   

15.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

16.
Upconversion emission and energy transfer processes in singly, doubly and triply doped tellurite glasses have been studied under 798 and 980 nm laser excitations. Emissions have been observed at 482, 544, 584, 655 nm and at 477, 655, 698, 800 nm corresponding to Tb3+: 5D4 → 7F6, 7F5, 7F4, 7FJ (J = 0, 1, 2, 3) and Tm3+: 1G4 → 3H6, 1G4 → 3F4, 3F3 → 3H6, 3H4 → 3H6 transitions, respectively. Among Tm3+, Yb3+and Tb3+ ions only Tm3+ has a ground state absorption at 798 nm excitation due to 3H4 ← 3H6 transition. For 980 nm excitation only Yb3+ can absorb the incident radiation. However, for both types of excitations, emission from all the three ions Tb, Yb and Tm has been observed. Possible mechanisms are proposed as follows: under 798 nm excitation Tm3+ ions are excited which excite Yb3+ ions through energy transfer. Finally “cooperative energy transfer” from a pair of Yb3+ ions to Tm3+ and Tb3+ ions takes place. Under 980 nm excitation Yb3+ ions absorb the incident energy and excite Tm3+ and Tb3+ ions via cooperative energy transfer. Variation of emission intensity with the ion concentrations of Yb3+, Tm3+ and Tb3+ has been studied. The lifetime of the 1G4 level has also been measured.  相似文献   

17.
The adsorption of ethylene on Cu12Pt2 clusters has been studied within the density functional theory (DFT) approach to understand the high ethylene selectivity of Cu-rich Pt-Cu catalyst particles in the reaction of hydrogen-assisted 1,2-dichloroethane dechlorination. The structural parameters for Cu12Pt2 clusters with D4h, D2d, and C3v symmetry have been calculated. The relative stability of the isomeric Cu12Pt2 clusters follows the order: C3v > D2d > D4h. Each isomer has an active site for ethylene adsorption that consists of a single Pt atom surrounded by Cu atoms. The interaction of ethylene with the active site yields a π-C2H4 adsorption complex. The strongest π-C2H4 complex forms with the cluster of C3v symmetry; the bonding energy, ΔEπ(C2H4), is −15.6 kcal mol−1. The bonding energies for the π-C2H4 complex with Cu14 and Pt14 clusters are −6.5 and −18.8 kcal mol−1, respectively.The addition of Pt to Cu modifies the valence spd-band of the cluster as compared to a Cu14 cluster. The DOS near the Fermi level increases when C2H4 adsorbs on the Cu12Pt2 cluster. As well, the center of the d-band shifts toward lower binding energies. Ethylene adsorption also induces a number of states below the d-band. These states correspond to those of gas-phase C2H4.The vibrational frequencies of C2H4 adsorbed on the clusters of D4h and C3v symmetry have been calculated. The phonon vibrations occur below 250 cm−1. The intense bands around 200 cm−1 are attributed to stretching vibrations of the Pt-Cu bonds normal to the cluster surface. The stretching vibrations of the Pt-C bonds depend on the local structure of the active site: νs(Pt-C) = 268 cm−1 and νas(Pt-C) = 357 cm−1 for the cluster of the D4h symmetry; νs(Pt-C) = 335 cm−1 and νas(Pt-C) = 397 cm−1 for the cluster of the C3v symmetry. Bands in the range of 800-3100 cm−1 are attributed to vibrations of the adsorbed C2H4 molecule. The signature frequencies of the π-C2H4 adsorption complex are the δs(CH2) deformation vibration at ∼1200 cm−1 and the ν(C-C) stretching vibration at ∼1500 cm−1. These vibration are absent for di-σ-C2H4 adsorption complexes.  相似文献   

18.
In this work a series of tetrakis complexes C[Tm(acac)4], where C+=Li+, Na+ and K+ countercations and acac=acetylacetonate ligand, were synthesized and characterized for photoluminescence investigation. The relevant aspect is that these complexes are water-free in the first coordination sphere. The emission spectra of the tetrakis Tm3+-complexes present narrow bands characteristic of the 1G43H6 (479 nm), 1G43F4 (650 nm) and 1G43H5 (779 nm) transitions of the Tm3+ ion, with the blue emission color at 479 nm as the most prominent one. The lifetime values (τ) of the emitting 1G4 level of the C[Tm(acac)4] complexes were 344, 360 and 400 ns for the Li+, Na+ and K+ countercations, respectively, showing an increasing linear behavior versus the ionic radius of the alkaline ion. An efficient intramolecular energy transfer process from the triplet state (T) of the ligands to the emitting 1G4 state of the Tm3+ ion is observed. This fact, together with the absence of water molecules in first coordination sphere, allows these tetrakis Tm3+-complexes to act as efficient blue light conversion molecular devices.  相似文献   

19.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

20.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号