首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase relations in the Sr-Fe-Co-O system have been investigated at 1100 °C in air by X-ray powder diffraction on quenched samples. Solid solutions of the form SrFe1−xCoxO3−δ (0?x?0.7), Sr3Fe2−yCoyO7−δ (0?y?0.4) and Sr4Fe6−zCozO13±δ (0?z?1.6) were prepared by solid-state reaction and by the sol-gel method. The structural parameters of single-phase samples were refined by the Rietveld profile method. The variation of the lattice parameters with composition has been determined for each solid solution and a cross-section of the phase diagram at 1100 °C in air for the entire Sr-Fe-Co-O system has been constructed.  相似文献   

2.
Three new compounds, LaCuOTe, CeCuOTe, and NdCuOTe, have been synthesized from the respective rare-earth elements, CuO, and a KI flux at 1023 K. The compounds, which have the ZrSiCuAs structure type, are isostructural to LaCuOS, and crystallize in space group P4/nmm of the tetragonal system with two formula units in cells of dimensions at 153 K of , , for LaCuOTe; , , for CeCuOTe; and , , for NdCuOTe. The structure of LnCuOTe (Ln=La, Ce, Nd) is composed of alternating PbO-like [Ln2O2] and anti-PbO-like [Cu2Te2] layers stacked perpendicular to [0 0 1]. The experimental optical band gaps of LaCuOTe and NdCuOTe are 2.31 and 2.26 eV, respectively. At 298 K the electrical conductivity of LaCuOTe is 1.65 S/cm and the Hall mobility is +80.6 cm2 V−1 s−1. The positive values of the Seebeck and Hall coefficients indicate p-type electrical conduction. First-principles theoretical calculations were performed on LaCuOQ (Q=S, Se, Te). In LaCuOTe, Cu 3d and Te 5p orbitals dominate the states near the valence band maximum; the states near the conduction band minimum are composed of Cu 4s, Te 5p, and La 5d orbitals. The larger dispersion of Cu 3d orbitals and the presence of Te 5p orbitals near the valence band maximum are responsible for the larger hole mobility of LaCuOTe compared to LaCuOS and LaCuOSe.  相似文献   

3.
High-temperature crystal structure of the layered cuprates Ln2CuO4, Ln=Pr, Nd and Sm with tetragonal T′-structure was refined using X-ray powder diffraction data. Substantial anisotropy of the thermal expansion behavior was observed in their crystal structures with thermal expansion coefficients (TEC) along a- and c-axis changing from TEC(a)/TEC(c)≈1.37 (Pr) to 0.89 (Nd) and 0.72 (Sm). Temperature dependence of the interatomic distances in Ln2CuO4 shows significantly lower expansion rate of the chemical bond between Pr and oxygen atoms (O1) belonging to CuO2-planes (TEC(Pr-O1)=11.7 ppm K−1) in comparison with other cuprates: TEC (Nd-O1)=15.2 ppm K−1 and TEC (Sm-O1)=15.1 ppm K−1. High-temperature electrical conductivity of Pr2CuO4 is the highest one in the whole studied temperature range (298-1173 K): 0.1-108 S/cm for Pr2CuO4, 0.07-23 S/cm for Nd2CuO4 and 2×10−4-9 S/cm for Sm2CuO4. The trace diffusion coefficient (DT) of oxygen for Pr2CuO4 determined by isotopic exchange depth profile (IEDP) technique using secondary ion mass spectrometry (SIMS) varies in the range 7.2×10−13 cm2/s (973 K) and 3.8×10−10 cm2/s (1173 K) which are in between those observed for the manganese and cobalt-based perovskites.  相似文献   

4.
The ternary selenides LnCuSe2 (Ln=La, Ce, Pr, Nd, Sm) have been synthesized by the reaction at 1173 K of Ln, Cu, and Se in a KBr or KI flux. The compounds, which are isostructural with LaCuS2, crystallize with four formula units in the space group P21/c of the monoclinic system. The structure may be thought of as consisting of layers of CuSe4 tetrahedra separated by double layers of LnSe7 monocapped trigonal prisms along the a-axis. Cell constants (Å or deg) at 153 K are: LaCuSe2, 6.8142(5), 7.5817(6), 7.2052(6), 97.573(1)°; CeCuSe2, 6.7630(5), 7.5311(6), 7.1650(6), 97.392(1)°; PrCuSe2, 6.740(1), 7.481(1), 7.141(1), 97.374(2)°; NdCuSe2, 6.7149(6), 7.4452(7), 7.1192(6), 97.310(1)°; SmCuSe2, 6.6655(6), 7.3825(7), 7.0724(6), 97.115(1)°. There are no Se-Se bonds in the structure of LnCuSe2; the formal oxidation states of Ln/Cu/Se are 3+/1+/2−.  相似文献   

5.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

6.
As part of the study of interaction of the Ba2RCu3O6+z (R=lanthanides and Y) superconductor with SrTiO3 buffer, phase equilibria of the subsystem, R2O3-TiO2-CuO (R=Nd, Y, and Yb), have been investigated in air at 960 °C. While the phase relationships of the two phase diagrams with smaller R (Y and Yb) are similar, substantial differences were found in the Nd2O3-TiO2-CuO system, partly due to different phase formation in the binary R2O3-TiO2 and R2O3-CuO systems. R2CuTiO6 and R2Cu9Ti12O36 were the only ternary phases established in all the three diagrams. R2Cu9Ti12O36 belongs to the perovskite-related [AC3](B4)O12 family which is cubic Im3. Depending on the size of R3+, R2CuTiO6 crystallizes in two crystal systems: Pnma (R=La-Gd), and P63cm (R=Dy-Lu). The structure and crystal chemistry of the Pnma series of R2CuTiO6 (R=La, Nd, Sm, Eu, and Gd) are discussed in detail in this paper. Patterns for selected members of R2CuTiO6 have also been prepared and submitted for inclusion in the Powder Diffraction File (PDF).  相似文献   

7.
Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 °C) and Sr-Cu-Si (800 °C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi3 (BaNiSn3-type) and SrNi9−xSi4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(NixSi1−x)2 (AlB2-type). The crystal structure of SrNi9−xSi4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn13-type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi5.5Si6.51.0. Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu2−xSi2+x (ThCr2Si2-type), Sr(CuxSi1−x)2 (AlB2-type), SrCu9−xSi4+x (0≤x≤1.0; CeNi8.5Si4.5-type) and SrCu13−xSix (4≤x≤1.8; NaZn13-type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems.Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba.  相似文献   

8.
Single crystals of a series of lanthanide lithium iridium oxides, Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu) with the double perovskite structure have been grown from molten LiOH/KOH fluxes. The compounds crystallize in a distorted 1:1 rock salt lattice of Li+ and Ir5+ cations in the monoclinic space group P21/n. The magnetic susceptibilities of Ln2LiIrO6 (Ln=Pr, Nd, Sm, Eu) are presented.  相似文献   

9.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

10.
The structures of 28 compounds in the two series Ba2LnSbO6 and Ba2LnNbO6 have been examined using synchrotron X-ray and in selected cases neutron powder diffraction at, below and above ambient temperature. The antimonate series is found to undergo a sequence of phase transitions from monoclinic to rhombohedral to cubic symmetry with both decreasing ionic radii of the lanthanides and increasing temperature. Compounds in the series Ba2LnNbO6, on the other hand, feature an intermediate tetragonal structure instead of the rhombohedral structure exhibited by the antimonates. This difference in symmetry is thought to be caused by π-bonding in the niobates that is absent in the antimonates. The bonding environments of the cations in these compounds have also been examined with overbonding of the lanthanide and niobium cations being caused by the unusually large B-site cations.  相似文献   

11.
The crystal structures of Ba2LnSbO6 (Ln=La, Pr, Nd and Sm) at room temperature have been investigated by profile analysis of the Rietveld method using either combined X-ray and neutron powder diffraction data or X-ray powder diffraction data. It has been shown that the structure of Ba2LnSbO6 with Ln =La, Pr and Nd are neither monoclinic nor cubic as were previously reported. They are rhombohedral with the space group . The distortion from cubic symmetry is due to the rotation of the LnO6/SbO6 octahedra about the primitive cubic [111]p-axis. On the other hand, the structure of Ba2SmSbO6 is found to be cubic. All compounds contain an ordered arrangement of LnO6 and SbO6 octahedra.  相似文献   

12.
The quaternary oxychalcogenides Ln4MnOSe6 (Ln=La, Ce, Nd), Ln4FeOSe6 (Ln=La, Ce, Sm), and La4MnOS6 have been synthesized by the reactions of Ln (Ln=La, Ce, Nd, Sm), M (M=Mn, Fe), Se, and SeO2 at 1173 K for the selenides or by the reaction of La2S3 and MnO at 1173 K for the sulfide. Warning: These reactions frequently end in explosions. These isostructural compounds crystallize with two formula units in space group of the hexagonal system. The cell constants (a, c in Å) at 153 K are: La4MnOSe6, 9.7596(3), 7.0722(4); La4FeOSe6, 9.7388(4), 7.0512(5); Ce4MnOSe6, 9.6795(4), 7.0235(5); Ce4FeOSe6, 9.6405(6), 6.9888(4); Nd4MnOSe6, 9.5553(5), 6.9516(5); Sm4FeOSe6, 9.4489(5), 6.8784(5); and La4MnOS6, 9.4766(6), 6.8246(6). The structure of these Ln4MOQ6 compounds comprises a three-dimensional framework of interconnected LnOQ7 bicapped trigonal prisms, MQ6 octahedra, and the unusual LnOQ6 tricapped tetrahedra.  相似文献   

13.
The crystal structure of the promising optical materials Ln2M2+Ge4O12, where Ln=rare-earth element or Y; M=Ca, Mn, Zn and their solid solutions has been studied in detail. The tendency of rare-earth elements to occupy six- or eight-coordinated sites upon iso- and heterovalent substitution has been studied for the Y2−xErxCaGe4O12 (x=0-2), Y2−2xCexCa1+xGe4O12 (x=0-1), Y2Ca1−xMnxGe4O12 (x=0-1) and Y2−xPrxMnGe4O12 (x=0-0.5) solid solutions. A complex heterovalent state of Eu and Mn in Eu2MnGe4O12 has been found.  相似文献   

14.
We have investigated, using X-ray powder diffraction data, the crystal structures of some fluorite derivatives with the formula Ln3MO7 (Ln=lanthanide or Y and M=Sb and Ta). In these compounds ordering of Ln and M occurs, leading to a parent structure in Cmmm. Tilting of the MO6 octahedra causes doubling of one of the cubic axes, leading to a number of non-isomorphic subgroups, e.g. Cmcm, Ccmm and Cccm. We have identified an alternative space group Ccmm instead of C2221 for those compounds containing a medium sized lanthanide or Y and M being Sb or Ta. Interestingly this is an alternative setting for the space group of the structure obtained when Ln is large (Cmcm). However, there tilting of the octahedra is around the a-axis of the parent structure, rather than around the b-axis as it is found in the compounds which we are reporting on here.In one compound, Nd3TaO7, both tilts occur. The phase transition between the two possible structures is a slow and difficult process above 80 K, allowing both phases to coexist.  相似文献   

15.
Crystal structures that occur in LiLnW2O8 (Ln=lanthanides and Y) have been studied using Rietveld profile analysis of X-ray diffraction data. Two types of structures were observed. The scheelite structure of the space group I41/a is adopted for compounds containing large lanthanides Ln=La-Gd. For smaller lanthanides (Ln=Dy-Lu and Y) the wolframite structure with the space group P2/n is observed. In LiTbW2O8, both structures occur. The phase transition between the two is a slow process making the obtainment of pure low temperature phase (wolframite) difficult. The space groups P1? and P2, recently reported for LiEuW2O8 and LiYW2O8, have not been observed in this series of compounds.  相似文献   

16.
Phase equilibria in systems La-M-Fe-O (M = Ca or Sr) at 1100° in air were studied. The homogeneity ranges and structures of solid solutions La1 ? x M x FeO3 ? δ (0 ≤ x ≤ 0.3 for M = Ca and 0 ≤ x ≤ 0.8 for M = Sr), Sr2 ? y La y FeO4 ? δ (0.8 ≤ y ≤ 1.0), and Sr3 ? z La z Fe2O7 ? δ (0 ≤ z ≤ 0.2) were determined using X-ray powder diffraction. The structural parameters of complex oxides were refined using the full-profile Rietveld technique. Correlations between the unit cell parameters and the compositions of solid solutions were derived. Isobaric/isothermal phase diagrams were constructed for systems La-M-Fe-O (M = Ca or Sr) at 1100°C in air.  相似文献   

17.
The crystal structure of the A-site deficient perovskite Ln1/3NbO3 (Ln=Nd, Pr) at room temperature has been determined, for the first time, as orthorhombic in space group Cmmm using high-resolution neutron powder diffraction. Pertinent features are the alternation of unoccupied layers of A-sites and layers partly occupied by Ln cations, as well as out-of-phase tilting of the NbO6 octahedra around an axis perpendicular to the direction of the cation/vacancy ordering. The phase transition behaviour of Nd1/3NbO3 has also been studied in situ. This compound undergoes a continuous phase transition at around 650 °C to a tetragonal structure in space group P4/mmm due to the disappearance of the octahedral tilting. The analysis of spontaneous strains shows that this phase transition is tricritical in nature.  相似文献   

18.
Ab initio energetic calculations based on the density functional theory (DFT) and projector augmented wave (PAW) pseudo-potentials method were performanced to determine the crystal structural parameters and phase transition data of the polymorphic rare-earth sesquioxides Ln2O3 (where Ln=La-Lu, Y, and Sc) with A-type (hexagonal) and B-type (monoclinic) configurations at ground state. The calculated results agree well with the limited experimental data and the critically assessed results. A set of systematic and self-consistent crystal structural parameters, energies and pressures of the phase transition were established for the whole series of the A- and B-type rare-earth sesquioxides Ln2O3. With the increase of the atomic number, the ionic radii of rare-earth elements Ln and the volumes of the sesquioxides Ln2O3 reflect the so-called “lanthanide contraction”. With the increase of the Ln3+-cation radius, the bulk modulus of Ln2O3 decreases and the polymorphic structures show a degenerative tendency.  相似文献   

19.
Polycrystalline samples of Ln3OsO7 (Ln=Pr,Nd,Sm) have been prepared. The structures of these compounds were determined by X-ray powder diffraction. They crystallize in a superstructure of cubic fluorite (space group Cmcm, Z=4). The samples have been characterized by magnetometry. The compounds show complex magnetic behavior at low temperatures caused by competing magnetic interactions leading to frustration.  相似文献   

20.
The standard molar Gibbs energies of formation of LnFeO3(s) and Ln3Fe5O12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K.Cell (I): (−)Pt / {LnFeO3(s)+Ln2O3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe0.95O(s)} / Pt(+);Cell (II): (−)Pt/{Fe(s)+Fe0.95O(s)}//CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+);Cell (III): (−)Pt/{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+);andCell(IV):(−)Pt/{Fe(s)+Fe0.95O(s)}//YDT/CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+).The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO3, Eu3Fe5O12, GdFeO3 and Gd3Fe5O12 calculated by the least-squares regression analysis of the data obtained in the present study are given byΔfm(EuFeO3, s) /kJ mol−1 (± 3.2)=−1265.5+0.2687(T/K)   (1050 ? T/K ? 1570),Δfm(Eu3Fe5O12, s)/kJ mol−1 (± 3.5)=−4626.2+1.0474(T/K)   (1050 ? T/K ? 1255),Δfm(GdFeO3, s) /kJ mol−1 (± 3.2)=−1342.5+0.2539(T/K)   (1050 ? T/K ? 1570),andΔfm(Gd3Fe5O12, s)/kJ·mol−1 (± 3.5)=−4856.0+1.0021(T/K)   (1050 ? T/K ? 1255).The uncertainty estimates for Δfm include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号