首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of compositions having the general formula Nd2−yYyZr2O7 have been synthesized by heating of mixtures of oxides of the components cation and characterized by X-ray diffraction and Raman spectroscopy. Rietveld analysis on the XRD data of all the compositions has been performed which revealed a decrease in lattice parameter as a function of y in the series Nd2−yYyZr2O7 (y=0.0-0.8). Subsequently, a biphasic region starts which continues for y=1.2 and 1.6. The other end member, i.e. Y2Zr2O7 is found to be defect fluorite. On the other hand, Nd3+ has been used as surrogate material for Am3+, which is a minor actinide found in spent nuclear fuel. In the pyrochlore range, the increasing trend of the x-parameter of 48f oxygen indicates the enhancement of disorder in the system. Raman spectroscopy has been employed to validate the data obtained from XRD. The involvement of 48f oxygen in disorder has also been verified by Raman spectroscopic investigation.  相似文献   

2.
Bi2Ti2O7 has been synthesized using a co-precipitation route from H2O2/NH3(aq) solutions of titanium with aqueous bismuth nitrate. The stoichiometric material crystallizes into a pale yellow cubic pyrochlore phase. A powder X-ray diffraction study showed this crystallization to be very temperature sensitive, the pure phase can only be obtained within a few degrees of 470°C. Time-of-flight powder neutron diffraction studies of Bi2Ti2O7 (Space group , a=10.37949(4) Å at ambient temperature, Z=8, Rp=3.95%, Rwp=4.75%) revealed positional disorder in the bismuth site and in the O′ oxide site both at ambient temperature and at 2 K.  相似文献   

3.
A facile CTAB-assisted sol-gel route has been successfully established to synthesize Y2Sn2O7 nanocrystals with pyrochlore structure. The route involves first the formation of CTAB-inorganics mesostructures as precursors and then their thermal decomposition to yield the final product. Well-crystallized and phase-pure Y2Sn2O7 particles of ∼40 nm in size can be readily obtained at 600°C, a temperature much lower than that of the conventional solid-state method. Furthermore, photoluminescence characterization of the Y2Sn2O7 nanocrystals doped with 5 mol% Eu3+ was carried out and the results show that the as-synthesized material display intense and prevailing emission at 589 nm belonging to the magnetic dipole transition.  相似文献   

4.
The crystal structure of metastable Li2Si3O7 was determined from single crystal X-ray diffraction data. The orthorhombic crystals were found to adopt space group Pmca with unit cell parameters of , and . The content of the cell is Z=4. The obtained structural model was refined to a R-value of 0.035. The structure exhibits silicate sheets, which can be classified as [Si6O14] using the silicate nomenclature of Liebau. The layers are build up from zweier single chains running parallel to c. Raman spectra are presented and compared with other silicates. Furthermore, the structure is discussed versus Na2Si3O7.  相似文献   

5.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

6.
In the present study, SrO doped Yttrium titanate pyrochlore was synthesized using solid state reaction technique. The sintering characteristics, crystal structure, thermal and conductivity behavior of doped and undoped pyrochlores have been studied to find their suitability in solid oxide fuel cells (SOFC). The as-prepared samples were characterized using X-ray diffraction (XRD), Fourier-Transform-Infrared spectroscopy (FT-IR), thermal-gravimetric analysis (TGA) and ac conductivity up to 900 °C. The results are discussed in light of oxygen vacancy formation and structural disordering. Undoped and doped yttrium titanate with SrO (x = 0.1) exhibits single Y2Ti2O7 phase with relative density of 94%. It was observed that further doping of SrO (x = 0.2–0.4) leads to formation of Y2Ti2O7 phase along with SrTiO3 phase. Excessive SrO (x = 0.4) results in increase in ionic conductivity to 1.50 × 10−1 S cm−1 whereas it impedes the densification process with relative density of 85%.  相似文献   

7.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

8.
A sub-solidus phase evolution study was done in CeO2-Sc2O3 and CeO2-Lu2O3 systems under slow-cooled conditions from 1400 °C. Long-range order probing of X-ray diffraction technique is utilized in conjunction with the ability of Raman spectroscopy to detect the changes in local co-ordination. Lu2O3 showed solubility of 30 mol% in CeO2, thus forming an anion deficient fluorite-type (F-type) solid solution, whereas Sc2O3 did not show any discernible solubility. A biphasic region (F+C) was unequivocally detected by Raman spectroscopy in Ce1−xLuxO2−x/2 (0.4?x?0.9) and in Ce1−xScxO2−x/2 (0.1?x?0.9) systems. Raman spectroscopy was valuable in studying these systems since oxygen vacancies are created on doping RE2O3 into ceria and Raman spectroscopy is very much sensitive to oxygen polarizability and local coordination. Back scattered images collected on representative compositions support the above-mentioned results.  相似文献   

9.
Powder X-ray diffraction (XRD) and Raman spectroscopic study of order-disorder-phase transition with increase in the content of Gd in Nd2−yGdyZr2O7 solid solution is being reported. It has been observed from Rietveld analysis that with increase in concentration of Gd in Nd2−yGdyZr2O7, the value of the x parameter of the 48f oxygen changes from 0.332(1) to 0.343(1) with a sudden change in the slope for y=1.8, which indicates that the structure is transforming from ordered pyrochlore to disordered pyrochlore. In addition to that a sudden and drastic change in the Raman spectra including changes in the position and width of several Raman modes beyond y?1.8 has also been observed which has been correlated with increasing disorder. Based on these studies, it is suggested that there is a discontinuous order-disorder transition from ‘perfect pyrochlore’ to ‘defect pyrochlore’ phase in Nd2−yGdyZr2O7 solid solution.  相似文献   

10.
The crystal structures of the compounds La2−xYxZr2O7 and La2−xYxHf2O7 with x=0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 have been studied using neutron powder diffraction and electron microscopy to determine the stability fields of the pyrochlore and fluorite solid solutions. The limits of pyrochlore stability in these solid solutions are found to be close to La0.8Y1.2Zr2O7 and La0.4Y1.6Hf2O7, respectively. In both systems the unit cell parameter is found to vary linearly with Y content across those compositions where the pyrochlore phase is stable, as does the x-coordinate of the oxygen atoms on the 48f (x,,) sites. In both systems, linear extrapolations of the pyrochlore data suggest that the disordering is accompanied by a small decrease in the lattice parameter of approximately 0.4%. After the pyrochlore solid solution limit is reached, a sharp change is observed from x∼0.41 to 0.375 as the disordered defect fluorite structure is favoured. Electron diffraction patterns illustrate that some short-range order remains in the disordered defect fluorite phases.  相似文献   

11.
A detailed Raman study on natural magnetite has been carried out. Raman spectra show four out of the five predicted Raman bands located at 668, 538, 306, and 193 rcm−1. The location of the fifth, unobserved phonon mode, is inferred from spectra of other ferrites at 450-490 rcm−1. Polarized experiments on an oriented single crystal provide a new interpretation of the Raman spectrum with the following assignment for symmetries of the observed modes: A1g for 668 rcm−1, Eg for 306 rcm−1, and T2g for 538, 193, and 450-490 rcm−1. The results are compared with those of the earlier Raman studies and possible explanations for the discrepancies are suggested. Some of the inconsistencies can be resolved by considering the effect of oxidation of magnetite during the Raman experiments.  相似文献   

12.
Powder neutron diffraction measurements were carried out for the ruthenium pyrochlore oxide Er2Ru2O7. The magnetic structure for this compound at 3.0 K has been solved using Rietveld analysis. The observed magnetic reflections suggest that the magnetic transitions are regarded as those to a long-range ordered state. It seems that the magnetic order of the Ru4+ and Er3+ magnetic moments occurs at 90 and 10 K, respectively.  相似文献   

13.
Among other alkaline-earth aluminates, the monoclinic (M) polymorph of SrAl2O4 can be used as host material for Eu2+ luminescence based phosphors. With the aim of reducing the synthesis temperature of this polymorph, we have produced and characterized by XRD and Raman scattering solid solutions of the SrAl2−xBxO4 system (x?0.3) obtained by two different methods, a ceramic route and a modified sol-gel synthesis. Though the addition of boron lowers the temperature of obtention of the M polymorph in both type of samples, lower B contents are needed to stabilize the M form as single phase for samples prepared by the sol-gel method than through the ceramic route. In the sol-gel method, the M polymorph can be obtained at temperatures as low as 1200 °C, with a Boron content of just 1%. Rietveld profile analysis allows us to conclude that coexistence of the monoclinic and hexagonal polymorphs of SrAl2O4 occurs for samples synthesized below an onset temperature of about 1000-1100 °C, that depends on the sample composition. Above those temperatures, only the monoclinic phase is formed.  相似文献   

14.
Single crystals of the thallium ruthenium pyrochlore have been grown by flux method under high oxygen pressure. The growth conditions were determined by direct observations using in situ powder X-ray diffraction (XRD) method under high pressure and high temperature. The crystals were grown using NaCl-KCl flux at 1350 °C and B2O3 flux at 1150 °C. High growth temperature of 1350 °C for the NaCl-KCl flux caused Pt contamination from the crucible and oxygen deficiency for the crystals obtained. The crystal growth using B2O3 flux proceeded at lower temperature by grain growth with material transfer through B2O3. The crystal obtained was characterized by single-crystal XRD method, and was found to have a stoichiometric composition, Tl2Ru2O7−δ (δ=0), with a structural phase transition around 120 K. The grain growth technique with B2O3 is efficient for high-temperature single-crystal growth under high pressure.  相似文献   

15.
Mössbauer and Raman spectroscopic studies were carried out on CoFe2O4 particles synthesized with size ranging from 6 to 500 nm (bulk). Cation distribution studies were carried out on the high temperature and room temperature phases of the microcrystalline CoFe2O4 by Mössbauer and Raman spectroscopic methods. The high temperature phase of CoFe2O4 showed a decreased inversion parameter of 0.69 as compared to the value of the room temperature phase of 0.95, indicating that the structure gradually transforms towards a normal spinel. Corresponding Raman spectra for these two phases of CoFe2O4 showed a change in relative peak intensity of the vibrational mode at 695 cm−1(A1g(1)) to 624 cm−1 (A1g(2)). The relative peak intensity ratio, Iv between the A1g(1) and A1g(2) vibrational mode was decreasing with lowering of inversion parameter of the CoFe2O4 spinel system. A variation of laser power on the sample surface was reflected in the cation distribution in ferrite phase. Superparamagnetic, single domain CoFe2O4 particles (6 nm) showed a 20 cm−1 red shift and broadening of phonon modes when compared to the macro-crystalline CoFe2O4 (500 nm). Variation of Raman shift with particle size was studied by considering the bond polarization model. Raman spectroscopic studies clearly indicate the variation in the cation distribution in nano-sized particles and distribution tending to a normal spinel structural configuration.  相似文献   

16.
Within the Bi2O3-XO2-TeO2 (X=Ti, Zr) systems, a large glass-forming domain was found for X=Ti, but no glass formation was evidenced for X=Zr. Densities, glass transition (Tg), crystallization (Tc) temperatures and Raman spectra of the relevant glasses were studied as functions of the composition. The Raman spectra of the glasses were interpreted in terms of the structural transformations produced by the modifiers. It was established that the addition of Bi2O3 and TiO2 content to TeO2 glass influences the Tg temperature in a similar manner: this value progressively increases with the increase of the modifier concentration. However, the structural evolutions are different: (a) the addition of TiO2 to TeO2 glass keeps the polymerized framework structure in transforming a number of Te-O-Te bridges into the Te-O-Ti ones without producing any tellurite anions (i.e., the [TeO3]2− groups); (b) on the contrary, the addition of Bi2O3 destroys the glass framework by giving rise to the island-type [TenOm]2(m−2n)− complex tellurites anions, thus causing a depolymerization of the glass.  相似文献   

17.
17O MAS NMR and XRD studies of precursor-derived Y1.6Zr0.4Ti2O7.2 and Y1.2Zr0.8Ti2O7.4 have been performed to investigate the development of local and long-range order in these materials as they evolve from a metastable amorphous state upon heating. Zirconium titanate (ZrTiO4) was also investigated to help interpret the 17O NMR spectra of the ternary compositions. Consistent with earlier studies, crystallization was observed at 800 °C to form a fluorite structure and a small amount of rutile; weak broad reflections were also observed which were ascribed to the presence of small pyrochlore-like ordered domains or particles within the fluorite phase. As the temperature was increased further, the sizes of these domains grew along with the concentration of rutile. At the highest temperature studied (1300 °C), the reflections of the thermodynamic phases, pyrochlore and zirconium titanate (ZrTiO4), dominated the XRD pattern. The 17O NMR spectra revealed a series of different peaks that were assigned to different 3- and 4-coordinate O local environments. The data were consistent with the formation of a metastable phase Y2−xZrxTi2−yZryO7+x with pyrochlore-like ordering but with Zr substitution on both cation sites of the pyrochlore structure. At low temperatures, doping on the A (Y3+) sites predominates (i.e., x>y), consistent with the fact that the pyrochlore develops out of a more disordered fluorite-like, phase. As the temperature is raised, the Zr doping on the A site decreases and the metastable phase at this temperature can now be written as Y2−xZrxTi2−yZryO7+x (i.e., x′<y′); TiO2 is also observed, consistent with this suggestion. At high temperatures, doping on the B site decreases and the resonances due to the stoichiometric pyrochlore yttrium titanate (Y2Ti2O7) dominate the NMR spectra. Weaker 17O NMR resonances due zirconium titanate (ZrTiO4) are also observed.  相似文献   

18.
Na2Ti3O7 and Na2Ti6O13 were synthesized by sol-gel method in order to obtain pure phases. Different heat-treatments were applied on powders and pellets of these materials. The effects were studied by XRD, dilatometry, TGA-DTA, SEM and electrochemical impedance spectroscopy. Pure Na2Ti3O7 was obtained at 973 K. Sintering at 1373 K caused a partial decomposition into Na2Ti6O13. The Na2Ti3O7 powder sintered at 1273 K showed polygonal microstructure. Na2Ti3O7 pellets sintered at 1323 K for 10 h exhibited large structures. This latter microstructure decreased the electrical conductivity of Na2Ti3O7. Pure Na2Ti6O13 was obtained at 873 K. Sintering at 1073 K caused a partial decomposition into TiO2 (rutile). Na2Ti6O13 pellets sintered at 1323 K for 10 h exhibited common shrinkage behavior. This shrinkage process increased the electrical conductivity of this material. The presence of TiO2 resulted in a oxygen partial pressure dependence of the electrical conductivity.  相似文献   

19.
The perovskite-related layered structure of La2Ti2O7 has been studied at pressures up to 30 GPa using synchrotron radiation powder X-ray diffraction (XRD) and Raman scattering. The XRD results indicate a pronounced anisotropy for the compressibility of the monoclinic unit cell. The ratio of the relative compressibilities along the [100], [010] and [001] directions is ∼1:3:5. The greatest compressibility is along the [001] direction, perpendicular to the interlayer. A pressure-induced phase transition occurs at 16.7 GPa. Both Raman and XRD measurements reveal that the pressure-induced phase transition is reversible. The high-pressure phase has a close structural relation to the low-pressure monoclinic phase and the phase transition may be due to the tilting of TiO6 octahedra at high pressures.  相似文献   

20.
Differential scanning calorimetry of [Rb0.44(NH4)0.56]2HgCl4 · H2O material showed three anomalies at 340, 355 and 424 K, respectively. The room temperature phase has space group Pcma (a=8.433(1) Å, b=9.1817(9) Å and c=11.954(1)). Phase II (T=350 K) is disordered and exhibits orthorhombic symmetry (a=8.456(13), b=9.202(9) and c=12.011(10) Å). Hydrogen bonding, the nature and the degree of structure (dis)order and the mechanisms of the transitions are discussed. The dielectric constant at different frequencies and temperature revealed a phase transition at T=340 K related to NH4+ reorientation and H+ diffusion, and a characteristic increase above 355 K, which might be due to loss of water of crystallization. Transport properties in this compound appear to be due to an Rb+/NH4+ and H+ ions hopping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号