首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子二次电池碳负极材料的改性   总被引:5,自引:1,他引:5  
吴宇平  万春荣 《电化学》1998,4(3):286-292
作为锂离子二次电池的碳负极材料,其改性方面的研究内容主要有:引入非金属元素,引入金属元素,处理表面及其它方面。纺入的非金属元素有硼,硅,氮,磷和硫。引入的金属元素有钾,铝,镓和钒,镍,钴,铜,铁等过渡金属元素。表面处理的方法包括氧化,形成表面层等。  相似文献   

2.
Carbon microcapsules containing silicon (Si) nanoparticles (NPs) were prepared from silicon-embedded polymer microspheres. The precursors, polymeric microspheres containing silicon nanoparticles were fabricated by a facile emulsion polymerization with surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The effects of monomer, surfactant concentration, and ionic character of surfactant on the formation of microspheres were demonstrated. The successful fabrication of polystyrene/polydivinylbenzene microspheres with Si NPs was confirmed by scanning electron microscopy. Subsequent thermal treatment produced carbon microcapsules having Si NPs. Volume shrinkage of polymer spheres during carbonization step resulting in the formation of internal free spaces in carbon microcapsules is the critical process in this experiment, which can accommodate volume changes of Si NPs during Li ion charge/discharge processes. The successful encapsulation of Si NPs with exterior carbon shell was clearly shown by transmission electron microscopy and X-ray diffraction. The change in size distribution and structure of polymer and carbon microspheres was also revealed. The cyclic performances of these Si@C microcapsules were measured with lithium battery half cell tests.  相似文献   

3.
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and studied as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA·g?1, the composite electrode still exhibits a specific capacity of ~100 mAh·g?1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.  相似文献   

4.
In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS_2 nanoparticle/graphene(SnS_2 NP/GNs) nanocomposite.The nanocomposite consists of SnS_2nanoparticles with an average diameter of 4 nm and graphene nanosheets without restacking.The SnS_2 nanoparticles are firmly anchored on the graphene nanosheets.As an anode material for LIBs,the nanocomposite exhibits good Li storage performance especially high rate performance.At the high current rate of 5,10,and 20 A/g,the nanocomposite delivered high capacities of 525,443,and 378 mAh/g,respectively.The good conductivity of the graphene nanosheets and the small particle size of SnS_2contribute to the electrochemical performance of SnS_2 NP/GNs.  相似文献   

5.
A sulfur-substituted disordered carbon is explored as anode material for lithium-ion battery. Its physical and electrochemical properties are characterized by a variety of techniques such as powder X-ray diffraction, element analysis, Fourier transform infrared spectrum, scanning electron microscopy, and typical electrochemical tests. Electrochemical tests show the activated carbon displays a first cycle discharge capacity of 1,216 mAh·g−1. It also has a remarkable cycling stability with an average capacity fade of 0.92% per cycle from 11th to 100th cycle in the range of 0.01–3.00 V versus metallic lithium at a current density of 100 mA·g−1. After 100 cycles, the electrode still maintained a capacity of 420 mAh·g−1.  相似文献   

6.
Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 °C for 30 min using MnO2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.  相似文献   

7.
Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources and chemistry. Sol-gel methods are promising candidates to prepare cathode materials owing to their evident advantages over traditional methods. In this paper, the latest progress on the preparation of cathode materials such as lithium cobalt oxides, lithium nickel oxides, lithium manganese oxides, vanadium oxides and other compounds by sol-gel methods is reviewed, and further directions are pointed out. The prepared products provide better electrochemical performance, including reversible capacity, cycling behavior and rate capability in comparison with those from traditional solid-state reactions. The main reasons are due to the following several factors: homogeneous mixing at the atomic or molecular level, lower synthesis temperature, shorter heating time, better crystallinity, uniform particle distribution and smaller particle size at the nanometer level. As a result, the structural stability of the cathode materials and lithium intercalation and deintercalation behavior are much improved. These methods can also be used to prepare novel types of cathode materials such as nanowires of LiCoO2 and nanotubes of V2O5, which cannot be easily obtained by traditional methods. With further development and application of sol-gel methods, better and new cathode materials will become available and the advance of lithium ion batteries will be greatly promoted.  相似文献   

8.
Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Nb2O5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb2O5/C based electrode exhibits high rate performance and remarkable cycling ability, showing a high and stable specific capacity of ~380 mAh g-1 at the current density of 50 mA g-1(much higher than the theoretical capacity of Nb2O5).Further more,at a current density of 500 mA g-1,the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g-1 after 100 cycles.These results suggest the Nb2O5/C nanocomposite is a high performance anode material for lithium-ion batteries.  相似文献   

10.
《中国化学快报》2020,31(9):2239-2244
Lithium-ion hybrid capacitors (LIHCs) is a promising electrochemical energy storage devices which combines the advantages of lithium-ion batteries and capacitors. Herein, we developed a facile multistep pyrolysis method, prepared an amorphous structure and a high-level N-doping carbon nanotubes (NCNTs), and by removing the Co catalyst, opening the port of NCNTs, and using NCNTs as anode material. It is shows good performance due to the electrolyte ions enter into the electrode materials and facilitate the charge transfer. Furthermore, we employ the porous carbon material (APDC) as the cathode to couple with anodes of NCNTs, building a LIHCs, it shows a high energy density of 173 Wh/kg at 200 W/kg and still retains 53 Wh/kg at a high power density of 10 kW/kg within the voltage window of 0–4.0 V, as well as outstanding cyclic life keep 80% capacity after 5000 cycles. This work provides an opportunity for the preparation of NCNTs, that is as a promising high-performance anode for LIHCs.  相似文献   

11.
Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.  相似文献   

12.
以金属氯化物为金属源,硫脲为硫源,聚乙二醇和乙二醇为混合溶剂,采用溶剂热法一步合成了球形的铜锌锡硫纳米颗粒.利用X射线衍射仪(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了铜锌锡硫纳米颗粒的物相、结构、形貌;利用电池测试系统对以铜锌锡硫纳米颗粒为锂离子电池负极材料组装的锂离子电池的电化学性能进行了测试.结果表明:所得到的产物为具有锌黄锡矿结构的纯相铜锌锡硫,颗粒直径在300~500nm.铜锌锡硫纳米颗粒作为锂离子电池的负极材料具有较好的稳定性,有望在锂离子电池研究和应用中得到推广.  相似文献   

13.
We demonstrate a facile route for the massive production of SnCb/carbon nanocomposite used as high-capacity anode materials of nextgeneration lithium-ion batteries.The nanocomposite had a unique structure of ultrafine SnO2 nanocrystals(5 nm,80 wt%) homogeneously dispersed in amorphous carbon matrix.This structure design can well accommodate the volume change of Li+ insertion/desertion in SnO2,and prevent the aggregation of the nanosized active materials during cycling,leading to superior cycle performance with stable reversible capacity of 400 mAh/g at a high current rate of 3.3 A/g.  相似文献   

14.
Impact of silicon tripodand-type electrolyte additives and graphite pre-treatment agents on the electrochemical intercalation of lithium cations into graphite was investigated. Addition of Si-tripodand-type silanes to propylene carbonate-based electrolytes was found to suppress detrimental solvent co-intercalation and graphite exfoliation. Similar effects were observed for graphite pre-treated with the reported silane agents. It was observed that the presented supramolecular additives allow for the formation of effective passive layers on graphite during first charging, and thus can be considered as novel low-cost film-forming components for rechargeable lithium batteries.   相似文献   

15.
The closed and open carbon nanotube electrodes have been studied as a function of frequency and the open circuit cell potential. A comparison of these spectra reveals different behaviors depending on the form of the carbon nanotubes: for the closed carbon nanotubes the impedance spectra consists of only one arc in the high frequency, for the open carbon nanotubes the impedance spectra consists of two separated semicircles in the high frequency. Analysis based on plausible equivalent circuit models for the carbon nanotubes lead to evaluation the kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interface.  相似文献   

16.
Recent results on the surface modification of petroleum cokes and their electrochemical properties as anodes of secondary lithium batteries are summarized. The surface of petroleum coke and those heat-treated at 1860-2800 °C were fluorinated by elemental fluorine (F2), chlorine trifluoride (ClF3) and nitrogen trifluoride (NF3). No surface fluorine was found except only one sample when ClF3 and NF3 were used as fluorinating agents while surface region of petroleum coke was fluorinated when F2 was used. Transmission electron microscopic (TEM) observation revealed that closed edge of graphitized petroleum coke was destroyed and opened by surface fluorination. Raman spectra showed that surface fluorination increased the surface disorder of petroleum cokes. Main effect of surface fluorination with F2 is the increase in the first coulombic efficiencies of petroleum cokes graphitized at 2300-2800 °C by 12.1-18.2% at 60 mA/g and by 13.3-25.8% at 150 mA/g in 1 mol/dm3 LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). On the other hand, main effect of the fluorination with ClF3 and NF3 is the increase in the first discharge capacities of graphitized petroleum cokes by ∼63 mAh/g (∼29.5%) at 150 mA/g in 1 mol/dm3 LiClO4-EC/DEC.  相似文献   

17.
Surface structure change and electrochemical behavior of fluorinated petroleum coke samples (petroleum cokes: petroleum coke and those heat-treated at 1860 °C, 2300 °C and 2800 °C, abbreviated to PC, PC1860, PC2300 and PC2800, respectively) have been investigated. Surface oxygen of petroleum coke was decreased by the fluorination using elemental fluorine. Raman and EPR spectroscopies revealed that surface fluorination increased surface disorder and lattice defects. 19F NMR spectrum suggests that distribution of fluorine atoms in PC fluorinated 300 °C was similar to that in graphite fluoride with covalent CF bonds. Surface areas of fluorinated petroleum cokes were nearly the same as those of non-fluorinated ones or only slightly increased by fluorination, except PC fluorinated at 300 °C. It is noted that first coulombic efficiencies of PC2300 and PC2800 were highly increased to 80-84% by the fluorination at 300 °C. These values of 80-84% were 12-18% higher than those of non-fluorinated PC2300 and PC2800.  相似文献   

18.
Surface modification of graphite powder has been performed by elemental fluorine and radiofrequency (rf) plasma fluorination. Both methods give rise to an enlargement of the surface areas of graphite samples and a change of the pore volume distribution. The capacities of surface-fluorinated graphite samples are higher than those of original samples and even more than the theoretical capacity of graphite, 372 mAh g−1, without any reduction of the first colombic efficiencies. The increments of the capacities are ∼5, 10, and 15% for graphite samples with average particle diameters of 7, 25 and 40 μm, respectively.  相似文献   

19.
Single-wall carbon nanotube (SWNT) is processed in three different ways: (1) coating a film out of a slurry of SWNT with poly (vinilydene difluoride) (PVDF) binder on to a Cu substrate, (2) evaporating SWNT dispersion in methanol on to a Cu substrate, and (3) transferring a film on to a Cu substrate from the water–ethanol interface, to prepare the working electrode for studying the Li ion insertion process. The use of binder enhances irreversible capacity restricting the Coulomb efficiency to only 18% in the initial cycle. The electrode prepared by deposition of SWNT powder from a dispersion of methanol on the Cu substrate gives the best reversible capacity of 445 mA h g−1 and Coulomb efficiency of 25% in the initial cycle. Use of the PVDF binder favors the formation of thicker solid electrolyte interface, which counts the large irreversible capacity.  相似文献   

20.
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g) and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of dead lithium are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS) as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9% over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_4(LFP) as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4% after 100 cycles at 0.5 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号