首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
唐炜  王小璞  曹景军 《物理学报》2014,63(24):240504-240504
为便于评价、优化磁式压电振动能量采集系统的性能,系统研究了该类系统的建模与分析方法,建立了非线性的分布参数模型用于描述系统的非线性动力学行为,并采用谐波平衡法给出了谐波响应的解析解.随后利用仿真模型分析了磁铁间距、加速度幅值、负载阻抗对输出功率的影响,比较了不同激励频率和加速度幅值下的最优阻抗.结果表明:双稳态特性适用于低强度的振动环境,且愈接近临界区域,输出功率愈高,而单稳态渐硬特性适用于高强度振动环境,其最优间距并不靠近临界区域;阱间大幅运动和阱内小幅运动均存在高低能量态共存的现象,愈接近临界区域,现象愈明显;激振频率是影响最优负载阻抗的决定性因素.  相似文献   

2.
蓝春波  秦卫阳  李海涛 《物理学报》2015,64(8):80503-080503
随着压电晶体材料的迅速发展, 基于压电效应的能量采集系统是俘获环境中的宽带随机振动能量的一种有效途径. 研究了有限宽带随机激励作用下, 磁斥力双稳态压电俘能系统的相干共振俘能机理, 并进行了实验验证. 运用Euler-Maruyama方法求解了随机非线性压电振动耦合方程, 比较分析了相干共振发生前后系统的动力学特性和俘能效率, 然后基于Kramers逃逸速率解释了相干共振. 最后的随机振动实验结果验证了双稳态压电俘能系统的相干共振俘能机理. 并且观察到: 当相干共振发生时, 系统会在两个势能阱之间剧烈运动, 此时宽带随机振动能量会被转化为大幅值窄带低频振动响应, 从而极大地提高了宽带随机振动能量的俘获效率.  相似文献   

3.
代显智  刘小亚  陈蕾 《物理学报》2016,65(13):130701-130701
针对悬臂梁振动能量采集器在大振幅振动下梁容易断裂的缺点,本文提出了一种基于摆式结构的具有宽频和倍频特性的振动能量采集器,该采集器由两个Terfenol-D/PMN-PT/Terfenol-D磁电换能器和嵌有六个磁铁的旋转摆构成.文中建立了摆式结构的摆动方程,分析了采集器的频率响应特性以及谐振时的机-磁-电转换特性,并对采集器输出电压波形进行了频谱分析.理论和实验研究表明:该采集器具有宽频和倍频特性,采集器样机在1 g(1 g=9.8 m/s~2)有效值加速度振动下,向下扫频时的半功率带宽达到4.8 Hz,且能在f=16.9 Hz的振动下获得3.569 mW的负载功率.利用双换能器以及采集器的倍频和宽频特性,能有效地提高低频时采集器的输出功率.  相似文献   

4.
A relatively simple method for determining the electromechanical parameters of electromagnetic energy harvesters are presented in this paper. The optimal power generated through a load resistor at both off-resonance and resonance is derived analytically. The experimentally measured performance of a rudimentary electromechanical energy harvester using a rare-earth magnet shows good agreement with the results from the model. The parasitic generator coil resistance can have a profound effect on the overall performance of an electromagnetic generator by essentially acting to degrade the effective coupling coefficient. Data from the setup electromagnetic generator shows normalized power densities of 1.7 μW/[(m/s2)2 cm3] operating at a resonance frequency of 112.25 Hz. This power density is comparable with other electromagnetic devices of the same volume operating at these frequencies. The power output of the presented electromagnetic generator is comparable to equivalent piezoelectric generators.  相似文献   

5.
The continuing need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted renewed interest in recent years for energy harvesting technologies capable of capturing energy from ambient vibrations. A particular focus has been placed on piezoelectric materials and devices due to the simplicity of the mechanical to electrical energy conversion and their high strain energy densities compared to electrostatic and electromagnetic equivalents. In this paper an arrangement of piezoelectric layers attached to a bistable asymmetric laminate is investigated experimentally to understand the dynamic response of the structure and power generation characteristics. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or “snap-through”, is used to repeatedly strain the surface bonded piezoelectric and generate electrical energy. This approach has been shown to exhibit high levels of power extraction over a wide range of vibrational frequencies. Using high speed digital image correlation, a variety of dynamic modes of oscillation are identified in the harvester. The sensitivity of such modes to changes in vibration frequency and amplitude are investigated. Power outputs are measured for repeatable snap-through events of the device and are correlated with the measured modes of oscillation. The typical power generated is approximately 3.2?mW, comparing well with the needs of typical wireless senor node applications.  相似文献   

6.
This work investigates a vibration-based energy harvesting system composed of two oscillators coupled with essential (nonlinearizable) stiffness nonlinearity and subject to impulsive loading of the mechanical component. The oscillators in the system consist of one grounded, weakly damped linear oscillator mass (primary system), which is coupled to a second light-weight, weakly damped oscillating mass attachment (the harvesting element) through a piezoelastic cable. Due to geometric/kinematic mechanical effects the piezoelastic cable generates a nonlinearizable cubic stiffness nonlinearity, whereas electromechanical coupling simply sees a resistive load. Under single and repeated impulsive inputs the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing high-frequency ‘bursts’ or instabilities in the response of the harvesting element. In turn, these high-frequency dynamic instabilities result in strong and sustained energy transfers from the directly excited primary system to the lightweight harvester, which, through the piezoelastic element, are harvested by the electrical component of the system or, in the present case, dissipated across a resistive element in the circuit. The primary goal of this work is to demonstrate the efficacy of employing this type of high-frequency dynamic instability to achieve enhanced nonlinear vibration energy harvesting under impulsive excitations.  相似文献   

7.
This paper presents the application of semi-active control for optimising the power harvested by an electro-mechanical energy harvester. A time-periodic damper, defined by a Fourier series, is introduced for energy harvesting in order to increase the performance of the device. An analytical solution for the transmissibility and the average absorbed power is derived based on the method of harmonic balance. The coefficients of the semi-active model are optimised to maximise the harvested power. The harvested power from the optimum periodic time-varying damper at a particular frequency is compared and is shown to be greater than that from an optimum passive damper and a semi-active on–off damper not only at that particular frequency but also at other frequencies. In addition, the performance of the optimised periodic time-varying damper is also compared with an arbitrary semi-active time-periodic damper, which has the same transmissibility at resonance. An optimisation is carried out to maximise the power in a frequency range and the optimum damper is derived as a function of the excitation frequency. The numerical results are validated with the analytical approach.  相似文献   

8.
We examine the energy harvesting system consisted of two different masses (magnets) attached to piezoelastic oscillators, coupled by the electric circuit, and driven by harmonic excitations. The nonlinearity of the system is achieved by variable distance between vibrating magnetic masses and the magnets attached directly to the harvester. We also introduce the mistuning parameter which describes the disproportion of vibrating masses (their ratio). In our work we examine the dependence of output power (in terms of mean squared voltage) generated on electric load on excitation frequencies for different values of mistuning parameter and additionally for different values of system nonlinearity parameter. We compare obtained results with the dia- grams presenting relative displacements of these oscillators (in terms of standard deviation) vs. excitation frequencies. In the second part of this paper we present the phase boundary lines (phase portraits) for selected values of applied frequency to show the complicated behavior of the oscillators in the nonlinear regime when the mistuning appears.  相似文献   

9.
In this paper we examine in detail the multiple responses of a novel vibrational energy harvester composed of a vertical bistable beam whose complex non-linear behavior is tuned via magnetic interaction. The beam was excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric element. The bistable laminate beam coupled to the piezoelectric transducer showed a variety of complex responses in terms of the beam displacement and harvested power output. The range of vibration patterns in this non-linear system included single-well oscillations and snap-through vibrations of periodic and chaotic character. Harvested power was found to be strongly dependent on the vibration pattern with nonlinearities providing a broadband response for energy harvesting. Wavelet analysis of measured voltage, displacement and velocity time histories indicated the presence of a variety of nonlinear periodic and also chaotic phenomena. To measure the complexity of response time series we applied phase portraits and determine stroboscopic points and multiscale entropy. It is demonstrated that by changing parameters such as the magnetic interaction, the characteristics of the bistable laminate harvester, such as the natural frequency, bandwidth, vibration response and peak power can be readily tailored for harvesting applications.  相似文献   

10.
A type of dual-mass vibration energy harvester, where two masses are connected in series with the energy transducer and spring, is proposed and analyzed in this paper. The dual-mass vibration energy harvester is proved to be able to harvest more energy than the traditional single degree-of-freedom (dof) one when subjected to harmonic force or base displacement excitations. The optimal parameters for maximizing the power output in both the traditional and the new configurations are discussed in analytical form while taking the parasitic mechanical damping of the system into account. Consistent of the previous literature, we find that the optimal condition for maximum power output of the single dof vibration energy harvester is when the excitation frequency equals to the natural frequency of the mechanical system and the electrical damping due to the energy harvesting circuit is the same as the mechanical damping. However, the optimal conditions are quite different for the dual-mass vibration energy harvester. It is found that two local optimums exist, where the optimal excitation frequency and electrical damping are analytically obtained. The local maximum power of the dual-mass vibration energy harvester is larger than the global maximum power of single dof one. Moreover, at certain frequency range between the two natural frequencies of the dual-mass system, the harvesting power always increases with the electrical damping ratio. This suggests that we can obtain higher energy harvesting rate using dual-mass harvester. The sensitivity of the power to parameters, such as mass ratio and tuning ratio, is also investigated.  相似文献   

11.
Linear energy harvesters have a narrow frequency bandwidth and hence operate efficiently only when the excitation frequency is very close to the fundamental frequency of the harvester. Consequently, small variations of the excitation frequency around the harvester's fundamental frequency drops its small energy output even further making the energy harvesting process inefficient. To extend the harvester's bandwidth, some recent solutions call for utilizing energy harvesters with stiffness-type nonlinearities. From a steady-state perspective, this hardening-type nonlinearity can extend the coupling between the excitation and the harvester to a wider range of frequencies. In this effort, we investigate the response of such harvesters, which can be modeled as a uni-modal duffing-type oscillator, to White Gaussian and Colored excitations. For White excitations, we solve the Fokker-Plank-Kolmogorov equation for the exact joint probability density function of the response. We show that the expected value of the output power is not even a function of the nonlinearity. As such, under White excitations, nonlinearities in the stiffness do not provide any enhancement over the typical linear harvesters. We also demonstrate that nonlinearities in the damping and inertia may be used to enhance the expected value of the output power. For Colored excitations, we use the Van Kampen expansion and long-time numerical integration to investigate the influence of the nonlinearity on the expected value of the output power. We demonstrate that, regardless of the bandwidth or the center frequency of the excitation, the expected value of the output power decreases with the nonlinearity. With such findings, we conclude that energy harvesters modeled as uni-modal duffing-type oscillators are not good candidates for harvesting energy under forced random excitations. Using a linear transformation, results can be extended to the base excitation case.  相似文献   

12.
带碰撞双稳态压电俘能系统的俘能特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
蓝春波  秦卫阳 《物理学报》2015,64(21):210501-210501
双稳态俘能系统的运动常常会陷入单个势能阱中, 导致俘能效率降低. 为了解决这个问题, 本文提出了一类带碰撞的磁斥力双稳态压电振动能量采集系统. 建立了该碰撞双稳态系统的机电耦合方程, 分析了碰撞对双稳态系统动力学特性的影响. 研究了确定性激励和低强度随机激励下碰撞对系统响应特性和俘能效率的影响. 结果表明: 简谐激励下, 碰撞能够使得原双稳态系统的单阱小幅周期运动转变为双阱间的大幅运动, 从而有效地提高输出功率. 得到了低强度随机激励下, 不同碰撞间隙对系统动力响应特性和输出功率的影响规律. 对一个给定的随机激励, 存在一个最优的碰撞间隙, 此时碰撞能够将原双稳态系统单阱内的随机运动转化为频繁的双阱跳跃, 出现大幅值运动, 从而大幅提高了系统的俘能效率.  相似文献   

13.
This paper investigates a nonlinear energy harvester that uses magnetic interactions to create an inertial generator with a bistable potential well. The motivating hypothesis for this work was that nonlinear behavior could be used to improve the performance of an energy harvester by broadening its frequency response. Theoretical investigations study the harvester's response when directly powering an electrical load. Both theoretical and experimental tests show that the potential well escape phenomenon can be used to broaden the frequency response of an energy harvester.  相似文献   

14.
Vibration energy harvesting research has largely focused on linear electromechanical devices excited at resonance. Considering that most realistic vibration environments are more accurately described as either stochastic, multi-frequency, time varying, or some combination thereof, narrowband linear systems are fated to be highly inefficient under these conditions. Nonlinear systems, on the other hand, are capable of responding over a broad frequency range; suggesting an intrinsic suitability for efficient performance in realistic vibration environments. Since a number of nonlinear dynamical responses emerge from dissipative systems undergoing a homoclinic saddle-point bifurcation, we validate this concept with a bistable inertial oscillator comprised of permanent magnets and a piezoelectric cantilever beam. The system is analytically modeled, numerically simulated, and experimentally realized to demonstrate enhanced capabilities and new challenges. In addition, a bifurcation parameter within the design is examined as either a fixed or an adaptable tuning mechanism for enhanced sensitivity to ambient excitation.  相似文献   

15.
The dynamic analogue of the von Karman equations is used to study the forced response, including asymmetric vibrations and traveling waves, of a clamped circular plate subjected to harmonic excitations when the frequency of excitation is near one of the natural frequencies. The method of multiple scales, a perturbation technique, is used to solve the non-linear governing equations. The approach presented provides a great deal of insight into the nature of the non-linear forced resonant response. It is shown that in the absence of internal resonance (i.e., a combination of commensurable natural frequencies) or when the frequency of excitation is near one of the lower frequencies involved in the internal resonance, the steady state response can only have the form of a standing wave. However, when the frequency of excitation is near the highest frequency involved in the internal resonance it is possible for a traveling wave component of the highest mode to appear in the steady state response.  相似文献   

16.
Snap-through mechanism is employed to harvest electricity from random vibration through piezoelectricity. The random excitation is assumed to be Gaussian white noise. The snap-through piezoelectric energy harvester possesses the bistability. For small-amplitude vibration in a potential well, the Ito stochastic differential equation of the electromechanical coupling system is derived from the Taylor approximation at a stable equilibrium point. The method of the moment differential equations is applied to determine the statistical moments of the displacement response and the output voltage. The effects of the system parameters on the output voltage and the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the numerical simulations. For large-amplitude interwell motion, the effects of the parameters on the output voltage and the output power are numerically investigated. Nonlinearity produced by the snap-through improves energy harvesting so that the snap-through piezoelectric energy harvester can outperform the linear energy harvester in the similar size under Gaussian white noise excitations.  相似文献   

17.
Piezoelectric energy harvesters exploiting strong mechanical nonlinearities exhibit intrinsic suitability for one of several modern challenges in vibratory energy harvesting: consistent kinetic performance in the presence of broadband environmental excitation. In particular, the bistable piezoelectric generator has been prolifically examined. However, most of the relevant literature relies on numerical simulation of specific experimental realizations to demonstrate superior performance. Due to the complexities and lack of analytical solutions for such designs, streamlined methods for parameter optimization,potential well shaping, optimal electromechanical coupling considerations, and other design methodologies are thus inhibited. To facilitate future innovation and research, this paper employs techniques from chaotic dynamical systems theory to provide a simplified analytical framework such that deeper insight into the performance of the bistable piezoelectric inertial generator may be obtained. Specifically, Melnikov theory is investigated to provide metrics for which homoclinic bifurcation may occur in the presence of harmonic, multi-frequency, and broadband excitation. The analysis maintains full consideration of the electromechanical coupling and electrical impedance effects and predicts that for range of dimensionless electrical impedance values, the threshold for chaotic motion and other high-energy solutions is significantly influenced.  相似文献   

18.
This paper investigates the linear response of an archetypal energy harvester that uses electromagnetic induction to convert ambient vibration into electrical energy. In contrast with most prior works, the influence of the circuit inductance is not assumed negligible. Instead, we highlight parameter regimes where the inductance can alter resonance and derive an expression for the resonant frequency.The governing equations consider the case of a vibratory generator directly powering a resistive load. These equations are non-dimensionalized and analytical solutions are obtained for the system's response to single harmonic, periodic, and stochastic environmental excitations. The presented analytical solutions are then used to study the power delivered to an electrical load.  相似文献   

19.
The application of stochastic resonance to mechanical energy harvesting is currently of topical interest, and this paper concentrates on an analytical and experimental investigation in which stochastic resonance is deliberately exploited within a bistable mechanical system for optimised energy harvesting. The condition for the occurrence of stochastic resonance is defined conventionally by the Kramers rate, and the modelling of a theoretical nonlinear oscillator driven by a small periodic modulating excitation and a harvestable noise source, which, together satisfy this condition, is developed in the paper. A novel experiment is also discussed which validates this particular form of stochastic resonance, showing that the response can indeed be amplified when the frequency of the weak periodic modulating excitation fulfills the correct occurrence condition. The experimental results indicate that the available power generated under this condition of stochastic resonance is noticeably higher than the power that can be collected under other harvesting conditions.  相似文献   

20.
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young’s modulus from the measured resonance frequency versus effective length dependency and find that Young’s modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号