首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
Slip damping is a mechanism exploited for dissipating noise and vibration energy in aerodynamic and machine structures. Such slip in layered structures can be simulated by applying pressure to hold the members together at the interface. However, while most analyses of the mechanism assume an environment of uniform pressure at the interface, experiments to date have confirmed that this is rarely the case. There have been recent attempts to relax the restriction of uniform interface pressure to allow for more realistic pressure profiles that are encountered in practice. However, such works have mostly been limited to static loading for which it has been established that the interfacial pressure gradient does play a dominant role in modulating the level of energy dissipation. This paper is an attempt to extend such analyses to account for cases of realistic dynamic loading that drive such structural vibration in the first instance. In particular, it is shown that under dynamic loads, frequency variation more than non-uniformity in the interface pressure can have significant effect on both the energy dissipation and the logarithmic damping decrement associated with the mechanism of slip damping in such layered structures.  相似文献   

2.
Aeronautical structures are commonly assembled with bolted joints in which friction phenomena, in combination with slapping in the joint, provide damping on the dynamic behavior. Some models, mostly nonlinear, have consequently been developed and the harmonic balance method (HBM) is adapted to compute nonlinear response functions in the frequency domain. The basic idea is to develop the response as Fourier series and to solve equations linking Fourier coefficients. One specific HBM feature is that response accuracy improves as the number of harmonics increases, at the expense of larger computational time. Thus this paper presents an original adaptive HBM which adjusts the number of retained harmonics for a given precision and for each frequency value. The new proposed algorithm is based on the observation of the relative variation of an approximate strain energy for two consecutive numbers of harmonics. The developed criterion takes the advantage of being calculated from Fourier coefficients avoiding time integration and is also expressed in a condensation case. However, the convergence of the strain energy has to be smooth on tested harmonics and this constitutes a limitation of the method. Condensation and continuation methods are used to accelerate calculation. An application case is selected to illustrate the efficiency of the method and is composed of an asymmetrical two cantilever beam system linked by a bolted joint represented by a nonlinear LuGre model. The practice of adaptive HBM shows that, for a given value of the criterion, the number of harmonics increases on resonances indicating that nonlinear effects are predominant. For each frequency value, convergence of approximate strain energy is observed. Emergence of third and fifth harmonics is noticed near resonances both on vibratory responses and on approximate strain energy. Parametric studies are carried out by varying the excitation force amplitude and the threshold value of the adaptive algorithm. Maximal amplitudes of vibration and frequency response functions are plotted for three different points of the structure. Nonlinear effects become more predominant for higher force amplitudes and consequently the number of retained harmonics is increased.  相似文献   

3.
A model for the characterization of friction contacts in turbine blades   总被引:2,自引:0,他引:2  
Stresses produced by the forced vibrations can lead to a significant reduction of the life of turbo engine blades. To predict the vibration amplitudes of this components an accurate dynamic analysis is necessary. The forced response calculation of these dynamic systems is strongly affected by the presence of the contact interfaces (i.e., underplatform dampers, shrouds, root joints). Different contact models are available in literature. These models make use of contact parameters, contact stiffness and friction coefficient to evaluate the damping and stiffness related to the contact interfaces. In this paper a model is proposed to characterize friction contact of non-spherical contact geometries obeying the Coulomb friction law with constant friction coefficient and constant normal load. The hysteresis curves of the oscillating tangential contact forces vs. relative tangential displacements and the dissipated energy at the contact are obtained for different contact geometries. The developed model is suitable to be implemented in numerical solvers for the calculation of the forced response of turbine blades with embedded friction contacts.  相似文献   

4.
叶扬  王树林 《物理学报》2014,63(22):224304-224304
碰撞阻尼在机床、机器人、透平机械、飞机以及运载火箭等领域具有重要的应用价值. 在碰撞阻尼器中加入微颗粒材料, 可以利用颗粒的细化和塑性变形而有效地吸收振动能量, 为碰撞阻尼的研究和发展开辟了一条新途径. 本文讨论了带有中值粒度为50 μm的铜颗粒碰撞阻尼器在96 h内对正弦激励悬臂梁的阻尼减振特性. 研究表明, 在所考察的时间段内, 主系统的响应经历了先上升、再下降和再上升的过程. 这三个阶段的响应对应着铜颗粒微观结构变化的三个阶段. 在初始阶段, 铜颗粒主要表现为弹性变形, 能耗较低, 而钢球的次谐波共振可能将部分能量返回给主系统, 使主系统响应随时间呈现近似线性的上升; 在第二阶段, 当主系统响应增加到一定程度时, 钢球对铜粉的冲击力超出铜颗粒的屈服应力, 铜颗粒发生屈服, 不可逆能耗使主系统的响应震荡下降; 到了第三阶段, 铜颗粒在钢球冲击下发生硬化, 其应变和层错概率上升, 应变能和层错能下降, 主系统的响应再次持续震荡上升. 本文的结果对振动的被动控制以及材料塑性变形机理研究具有参考 意义. 关键词: 振动控制 碰撞阻尼 颗粒减振剂 微结构分析  相似文献   

5.
The paper is concerned with modelling the dynamic behaviour of a structure with damping. Hysteretic damping is commonly accepted to be reasonably accurate in some circumstances, but can only be applied directly in the frequency domain. Dynamic (time) behaviour, however, is most conveniently predicted by a viscous model. A damping matrix is constructed for use in the viscous equation which gives a dissipation of energy approximating to the hysteretic model. The approximation is justified by comparing results in the frequency and time domains and against measured data from a loudspeaker diaphragm. The ability of the matrix to reflect different damping in various components of the structure is considered, together with predicted natural frequencies and modes.  相似文献   

6.
This paper presents the implementation of autoparametric phenomena to reduce the symmetrical vibration of a curved beam/panel under external harmonic excitation. The internal energy transfer of a first symmetric mode into first anti-symmetric mode in a curved panel is one example of autoparametric vibration absorber effect. This is similar to the vibration energy transfer from the resonance of a primary structure to the resonance of a secondary spring–mass (tuned mass damper). The nonlinear response of a curved beam is analyzed using an equation with two modes, and a shaker test. The effect of different configurations of the curve beam/panel, including damping ratios and excitation levels, on the energy transfer of the first symmetric mode to the first anti-symmetric mode was studied.The conventional tuned mass damper (TMD) can reduce the resonance response by energy transfer using damping dissipation, whereas an autoparametric vibration absorber (AVA) can reduce the resonance response by energy transfer using parametric interaction. The results indicate that there is a non-absorption region in which vibration is amplified. For the AVA, the non-absorption region can be minimized by tuning the resonance frequency of the first anti-symmetric mode to half of the first symmetric mode resonance frequency using additional mass. No additional damping material is required for achieving sufficient vibration reduction. The AVA can maintain reliable performance in hot and corrosive environments where damping material cannot perform effectively. This paper presents the first successful experimental results of an autoparametric vibration absorption mechanism in a curved beam.  相似文献   

7.
An analytical model is presented for structure-borne sound transmission at a bolted junction in a rib-stiffened plate structure. The model is based on the wave approach for junctions of semi-infinite plates and calculates coupling loss factors required by statistical energy analysis. The stiffening rib is modeled as a plate strip and the junction is represented by an elastic interlayer with a spatially dependent stiffness. Experimental verification is carried out on a series of Plexiglas plate structures with varying rib depth and bolt spacing. A well-defined connection length at the junction was created by inserting thin spacers between the plate and the rib at each bolt. Comparison between numerical and experimental data for this case showed good agreement. Measured results for the bolted junction without spacers suggested that structure-borne sound transmission could be modeled as a series of connections characterized by a finite connection length. This concept is explored further by determining an equivalent connection length which gives the best agreement between numerical and experimental data.  相似文献   

8.
Friction-induced self-excited linear vibration is often governed by a second-order matrix differential equation of motion with an asymmetric stiffness matrix. The asymmetric terms are product of friction coefficient and the normal stiffness at the contact interface. When the friction coefficient becomes high enough, the resultant vibration becomes unstable as frequencies of two conjugate pairs of complex eigenvalues (poles) coalesce (when viscous damping is low).This short paper presents a receptance-based inverse method for assigning complex poles to second-order asymmetric systems through (active) state-feedback control of a combination of active stiffness, active damping and active mass, which is capable of assigning negative real parts to stabilise an unstable system.  相似文献   

9.
This paper presents a new design of nonlinear dynamic absorber (NDA) using the phenomenon of modal energy transfer between the symmetric mode and the anti-symmetric mode of a curved beam. It can reduce the resonance vibration of a primary structure with a controllable operational frequency range. The energy transfer is initiated by an autoparametric vibration and the excitation force required is lowest when the ratio of the resonance frequencies of the first symmetric mode (ω1) and first anti-symmetric mode (ω2) is close to 2.The resonance frequency of the first anti-symmetric mode (ω2) can be altered to control the operational frequency range. The autoparametric vibration response can be used to create an energy-dissipative region with a controllable bandwidth. It is also possible to create a non-dissipative region in between two dissipative regions. This is useful for providing damping for a conventional dynamic absorber without adding high damping material. The damping is due to the dissipation of energy to anti-symmetric mode. Numerical calculations indicate that the resonance vibration of a primary structure can be successfully reduced using this approach. The results are verified with experimental data.  相似文献   

10.
Interfacial slip in joints is the major contributor to the inherent damping of most fabricated structures. By fastening joints tightly enough to prohibit translational slip, but not tightly enough to prohibit rotational slip (thereby making only a small sacrifice in static stiffness), it is shown, both experimentally and theoretically, that a useful increase in the inherent damping in a structure can be achieved, provided an optimum joint load is maintained. The analysis is simplified by using a general dynamic analysis computer program with a sub-program to model the friction joint.  相似文献   

11.
Dissipation of mechanical vibration energy at contact interfaces in a structure, commonly referred to as interface damping, is an important source of vibration damping in built-up structures and its modeling is the focus of the present study. The approach taken uses interface forces which are linearly dependent on the relative vibration displacements at the contact interfaces.The main objective is to demonstrate a straightforward technique for simulation of interface damping in built-up structures using FE modeling and simple, distributed, damping forces localized to interfaces where the damping occurs.As an illustration of the resulting damping the dissipated power is used for evaluation purposes. This is calculated from surface integrals over the contact interfaces and allows for explicit assessment of the effect of simulated interface forces for different cases and frequencies. The resulting loss factor at resonance is explicitly evaluated and, using linear simulations, it is demonstrated that high damping levels may arise even though the displacement differences between contacting surfaces at damped interfaces may be very small.  相似文献   

12.
This paper presents a method for the dynamic analysis of continuously and non-proportionally damped plates in bending modes. The damping can be in the form of constrained or unconstrained layers. The method is an extension of the equivalent dampers method discussed in a previous paper, in which the damping matrix of a discretized plate is replaced by a diagonal equivalent damping matrix. Each diagonal element represents an equivalent damper inserted between the structure and ground. In this method the number of equivalent dampers is reduced so that the receptance matrix of the damped structure can be obtained economically by a direct matrix method. The receptances of two different partially coated plates in transverse directions are computed by the method suggested. The verification of the results is demonstrated by comparison with the experimental values and also with the theoretical values obtained by the equivalent dampers method. The method presented can also be applied to the transverse vibration analysis of plates with discrete damping inserts.  相似文献   

13.
This paper presents the concept of a vibration control system in which motions of a continuous structure with piezoelectric sensors/actuators can be suppressed (or activated) through transforming mechanical energy to electrical one and vice versa. The study is focused on distributed parameter structures, in which electromechanical variables are spatially dependent, and therefore traditional methods of design of piezoelectric transformers do not apply. In this case, a different approach is necessary to account for the spatial dependency of the variables. To examine the feasibility of the proposed vibration control system, we have performed the vibration suppression analysis of the cantilevered beam with piezoelectric sensors/actuators subjected to an exciting force/moment(s). The experimental results indicate that the damping of the composite system increases by 8-10 times in comparison with the mechanical system.As a result, the paper significantly expands the concept of passive damping mechanism for structural systems to take into account the dynamics of a continuous elastic structure piezoelectrically coupled to electrical network.  相似文献   

14.
Structural vibration control by synchronized switch damping energy transfer   总被引:1,自引:0,他引:1  
The synchronized switch damping (SSD) technique has been demonstrated as an efficient means of suppressing structure vibrations. This paper presents a novel SSD technique based on an energy transfer (SSDET) scheme that transmits energy from an energy-source structure to a target structure in order to damp the latter. As a matter of fact, the transferred energy enhanced the synchronized switch damping on inductor (SSDI) with an initial current, thus leading to a better vibration control capability. The experiment, performed on a beam/plate system, succeeded in delivering an enhanced damping effect as compared to the SSDI technique by adopting the proposed control law. Comparisons between simulation and experiment also confirmed the effectiveness of the proposed mathematical model. The stability was discussed in order to determine the stability limit.  相似文献   

15.
丁凌云  龚中良  黄平 《物理学报》2009,58(12):8522-8528
以界面摩擦为研究对象,分析了黏滑过程中的能量积累和耗散问题.基于晶格热动力学理论,通过分析界面原子在周期性势场中跳跃前后的势能差,推导了界面原子温升公式.理论表明,界面温升与摩擦系统的接触状态和材料特性有关,界面交互势能是其中影响较大的因素之一.在滑动阶段初期,由于界面原子处于非热平衡状态,晶格的热振动将通过激发出新声子而耗散能量,从而使得非热平衡向平衡状态转变.通过引入量子力学和热力学理论,分析了界面摩擦能量的耗散规律.结果表明,当声子振动频率较大时,黏着阶段存储于界面振子上的弹性势能在滑动阶段就很快完全耗散,耗散时间远小于滑动阶段的时间. 关键词: 界面摩擦 黏滑 声子 温升  相似文献   

16.
Internal friction and dynamic shear modulus in an indium–21?at.% thallium alloy were measured as functions of frequency and cooling rate using broadband viscoelastic spectroscopy during the martensitic transformation which occurs in this material occurs around 50°C. Microstructural evolution of martensitic bands was captured using time-lapse optical microscopy. The amplitude of damping peaks due to the temperature-induced transformation in the polycrystalline alloy was found to exceed those reported by others for single crystals of similar alloy compositions, in contrast to the usual reduction in damping in polycrystals. The high temperature portion of the damping peak occurs before martensitic bands are observed; therefore this portion cannot be due to interfacial motion. Constrained negative stiffness of the grains can account for this damping, as well as for amplification of internal friction peaks in these polycrystals and for sigmoid-shaped anomalies in the shear modulus at high cooling rates. Surface features associated with a previously unreported pre-martensitic phenomenon are seen at temperatures above martensite-start.  相似文献   

17.
运用跃变旋转矢量法,即通过旋转矢量的起点、长度和相位的变化规律对受到空气弱阻尼作用和滑动摩擦力作用的弹簧振子的振动进行了研究.讨论了在滑动摩擦力作用下空气阻尼为临界阻尼和欠阻尼情况下的弹簧振子的运动,根据阻尼和初值情况得出不同的振动曲线.并对弹簧振子4种相图和相图旋转矢量进行了比较.  相似文献   

18.
This paper introduces the use of nonlinear damping for extending the dynamic range of vibration energy harvesters. A cubic nonlinear damper is initially considered and the average harvested power and the throw are obtained for different sinusoidal base excitation amplitudes and frequencies, both numerically and analytically. It is demonstrated that when excited at resonance, at an amplitude below its maximum operational limit, the harvested power using a nonlinear damper can be significantly larger than that of a linear energy harvester, therefore expanding its dynamic range. A potential approach to implementing cubic nonlinearity using a shunted electromagnetic device is also presented.  相似文献   

19.
Friction in contact interfaces of assembled structures is the prime source of nonlinearity and energy dissipation. Determination of the dissipated energy in an assembled structure requires accurate modeling of joint interfaces in stick, micro-slip and macro-slip states. The present paper proposes an analytical model to evaluate frictional energy loss in surface-to-surface contacts. The goal is to develop a continuous contact model capable of predicting the dynamics of friction interface and dissipation energy due to partial slips. To achieve this goal, the governing equations of a frictional contact interface are derived for two distinct contact states of stick and partial slip. A solution procedure to determine stick–slip transition under single-harmonic excitations is derived. The analytical model is verified using experimental vibration test responses performed on a free-frictionally supported beam under lateral loading. The theoretical and experimental responses are compared and the results show good agreements between the two sets of responses.  相似文献   

20.
The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号