首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Single crystals of calcium ferrite CaFe2O4-type NaTi2O4 having millimeter-sized needle shapes were synthesized by a reaction of Na metal and TiO2 in a sealed iron vessel at 1473 K. Sodium-deficient NaxTi2O4 single crystals with 0.558<x<1 were successfully synthesized by a topotactic oxidation reaction using NaTi2O4 single crystals as parent materials. The crystal structures of NaxTi2O4 with x=0.970, 0.912, 0.799, 0.751, 0.717, 0.686, 0.611, and 0.558 were determined by the single-crystal X-ray diffraction method. The basic framework constructed by the Ti1O6 and Ti2O6 double rutile chains was maintained in these NaxTi2O4 compounds. Based on the results of bond valence analysis, we speculated that the Ti1 sites are preferentially occupied by Ti3+ cations over the compositional range of 0.8<x<1, while both the Ti1 and Ti2 sites are randomly occupied by Ti3+ and Ti4+ cations at x=0.558. Magnetic susceptibility data indicated that the broad maximum around 40 K observed in as-grown NaTi2O4 is suppressed by an Na deficiency and vanishes in Na0.717Ti2O4. The electrical resistivity increased with the Na deficiency; however, it was still semiconductive in Na0.799Ti2O4.  相似文献   

2.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

3.
Fe3+-Nb5+ co-doped SnO2 was prepared at 1200 °C by a simple chemical co-precipitation method. The Sn1−2xFexNbxO2 solid solutions kept cassiterite structure in the range of 0<x?0.33, and their cell parameters decrease with increasing x. While x=0.40, a second phase with orthorhombic FeNbO4 structure co-exists with the cassiterite phase, and the second phase becomes dominant while x?0.45. The magnetic measurements indicated that low doping ratio sample (x=0.03) exhibits paramagnetic behavior. A paramagnetic-to-antiferromagnetic phase transition was observed for the samples with higher doping ratio (x?0.15).  相似文献   

4.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

5.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

6.
Nanoparticles of the Aurivillius phase La-substituted BTO (Bi4−xLaxTi3O12, with x=0.75) were obtained through a chemical lithiation process. They have been characterised by X-ray diffraction and transmission electron microscopy (diffraction and imaging at high resolution). The defect-free particles are platelet-shaped with the c large axis perpendicular to the plane. From high-resolution images, it is clear that the delamination process occurs at the level of the (Bi2O2)2+ intermediate layer and is destructive for this layer. The smallest thickness measured corresponds to one cell parameter (3.3 nm) but a large range of thicknesses have been observed: this suggests that the lithium insertion does not take place in all (Bi2O2)2+ layers, despite a large excess of lithium and a long reaction time. This is confirmed by ICP analysis, which leads to a formula Li0.99Bi3.25La0.77Ti3.00O12 for the lithiated compound. This behaviour towards lithium intercalation differs from those observed with BTO in literature, where lithium insertion is reported as occurring in every (Bi2O2)2+ layer. Possible explanations for this difference are advanced based on microstructural and structural considerations.  相似文献   

7.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

8.
Different substitutions, i.e. Sr2+, Ba2+, K+, Nb5+ and V5+, have been performed in the triclinic α-La2W2O9 structure in order to stabilise the high temperature and better ionic conductor cubic β-phase. This approach has been used to try to obtain a new series of ionic conductors with LAMOX-type structure without molybdenum and presumably better redox stability compared to β-La2Mo2O9. Nanocrystalline materials obtained by a freeze-drying precursor method at 600 °C exhibit mainly the β-La2W2O9 structure, however, the triclinic α-form is stabilised as the firing temperature increases and the crystallite size grows. Only high levels of Ba2+ and V5+ substitutions retained the cubic form at room temperature after firing above 1100 °C. However, these phases are metastable above 700 °C, exhibiting an irreversible transformation to the low temperature triclinic α-phase. The synthesis, structure, phase stability, kinetic of phase transformation and electrical conductivity of these materials have been studied in the present report.  相似文献   

9.
Transparent glasses of various compositions in the system (100−x)Li2B4O7x(SrO-Bi2O3-Nb2O5) (where x=10, 20, 30, 40, 50 and 60, in molar ratio) were fabricated via splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses. X-ray powder diffraction (XRD) and transmission electron microscopic studies confirmed the amorphous nature of the as-quenched and crystallinity in the heat-treated samples. Fluorite phase formation prior to the perovskite SrBi2Nb2O9 phase was analyzed by both the XRD and high-resolution transmission electron microscopy. Dielectric and the optical properties (transmission, optical band gap and Urbach energy) of these samples have been found to be compositional dependent. Refractive index was measured and compared with the values predicted by Wemple-Didomemenico and Gladstone-Dale relations. The glass nanocomposites comprising nanometer-sized crystallites of fluorite phase were found to be nonlinear optic active.  相似文献   

10.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

11.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

12.
A crystal structural model for the orthorhombic compound V2.38Nb10.7O32.7, which is known as “V2Nb9O27.5”, was developed by means of selected area electron diffraction (SAED), Rietveld refinement and high resolution electron microscopy (HREM). The metastable compound is obtained by thermal decomposition of freeze-dried precursors as chain-like agglomerated nanoparticles or by reaction of V2O5 with fresh-precipitated Nb2O5 as more compact micro-scaled crystals. With the latter, it was possible to identify its structure for the first time (space group Cmmm). The tetragonal tungsten bronze (TTB)-type structure shows high potential for ionic intercalation, since easily reducible [V5+2O2−] units are implemented in the tunnels of a rigid niobium oxide framework.  相似文献   

13.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

14.
Phase equilibria studies of the CaO:TiO2:Nb2O5 system confirmed the formation of six ternary phases: pyrochlore (A2B2O6O′), and five members of the (110) perovskite-slab series Can(Ti,Nb)nO3n+2, with n=4.5, 5, 6, 7, and 8. Relations in the quasibinary Ca2Nb2O7−CaTiO3 system, which contains the Can(Ti,Nb)nO3n+2 phases, were determined in detail. CaTiO3 forms solid solutions with Ca2Nb2O7 as well as CaNb2O6, resulting in a triangular single-phase perovskite region with corners CaTiO3-70Ca2Ti2O6:30Ca2Nb2O7-80CaTiO3:20CaNb2O6. A pyrochlore solid solution forms approximately along a line from 42.7:42.7:14.6 to 42.2:40.8:17.0 CaO:TiO2:Nb2O5, suggesting formulas ranging from Ca1.48Ti1.48Nb1.02O7 to Ca1.41Ti1.37Nb1.14O7 (assuming filled oxygen sites), respectively. Several compositions in the CaO:TiO2:Ta2O5 system were equilibrated to check its similarity to the niobia system in the pyrochlore region, which was confirmed. Structural refinements of the pyrochlores Ca1.46Ti1.38Nb1.11O7 and Ca1.51Ti1.32V0.04Ta1.10O7 using single-crystal X-ray diffraction data are reported (Fd3m (#227), a=10.2301(2) Å (Nb), a=10.2383(2) Å (Ta)), with Ti mixing on the A-type Ca sites as well as the octahedral B-type sites. Identical displacive disorder was found for the niobate and tantalate pyrochlores: Ca occupies the ideal 16d position, but Ti is displaced 0.7 Å to partially occupy a ring of six 96g sites, thereby reducing its coordination number from eight to five (distorted trigonal bipyramidal). The O′ oxygens in both pyrochlores were displaced 0.48 Å from the ideal 8b position to a tetrahedral cluster of 32e sites. The refinement results also suggested that some of the Ti in the A-type positions may occupy distorted tetrahedra, as observed in some zirconolite-type phases. The Ca-Ti-(Nb,Ta)-O pyrochlores both exhibited dielectric relaxation similar to that observed for some Bi-containing pyrochlores, which also exhibit displacively disordered crystal structures. Observation of dielectric relaxation in the Ca-Ti-(Nb,Ta)-O pyrochlores suggests that it arises from the displacive disorder and not from the presence of polarizable lone-pair cations such as Bi3+.  相似文献   

15.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

16.
17.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

18.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

19.
The ferroelectric ceramics of Bi4Ti3O12, SrBi4Ti4O15, and lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 were synthesized, and their Raman spectra were investigated. La-doping resulted in the enlargement of remnant polarization of Bi4Ti3O12-SrBi4Ti4O15. The structure of the Bi2O2 layers and TiO6 octahedra of the intergrowth was found to be different from those of Bi4Ti3O12 and SrBi4Ti4O15. La3+ ions exhibit pronounced selectivity for the occupation of A site as La content is lower than 0.50, and tend to be incorporated into Bi2O2 layers when the La content is higher than 0.50. Lanthanum substitution brings about the structural phase transition in Bi4Ti3O12-SrBi4Ti4O15. The variation of ferroelectric property may be attributed to combined contribution from the decreasing of the oxygen vacancies, the relaxation of the lattice distortion, the destroying of the insulation and the space charge compensation effects of the Bi2O2 slabs.  相似文献   

20.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号