首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 were synthesized on direct combination of their elements in stoichiometric ratios at T>800 °C under vacuum. Their structures were determined with X-ray diffraction of single crystals. InSn2Bi3Se8 crystallizes in monoclinic space group C2/m (No. 12) with a=13.557(3) Å, b=4.1299(8) Å, c=15.252(3) Å, β=115.73(3)°, V=769.3(3) Å3, Z=2, and R1/wR2/GOF=0.0206/0.0497/1.092; In0.2Sn6Bi1.8Se9 crystallizes in orthorhombic space group Cmc21 (No. 36) with a=4.1810(8) Å, b=13.799(3) Å, c=31.953(6) Å, V=1843.4(6) Å3, Z=4, and R1/wR2/GOF=0.0966/0.2327/1.12. InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 are isostructural with CuBi5S8 and Bi2Pb6S9 phases, respectively. The structures of InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 feature a three-dimensional framework containing slabs of NaCl-(311) type with varied thicknesses. Calculations of the electronic structure and measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps. Both compounds show n-type semiconducting properties with Seebeck coefficients −270 and −230 μV/K at 300 K for InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9, respectively.  相似文献   

2.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

3.
A nonmetal pentaborate [C6H13N2][B5O6(OH)4] (1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) Å, b=14.143(3) Å, c=11.003(2) Å, β=113.97(3)°, V=1451.1(5) Å3, Z=4. The anionic units, [B5O6(OH)4], are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C6H13N2]+ cations are located. Second-harmonic generation (SHG) measurements on the powder samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP).  相似文献   

4.
Two organically templated zincophosphites, (C6H14N2)·[Zn3(HPO3)4] and (C4H14N2)·[Zn3(HPO3)4] have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction. (C6H14N2)·[Zn3(HPO3)4] crystallizes in the triclinic space group , with cell parameters, a=9.363(4) Å, b=10.051(4) Å, c=10.051(4) Å, α=85.777(13)°, β=82.091(9)°, and γ=79.783(9)°. (C4H14N2)·[Zn3(HPO3)4] crystallizes in the monoclinic space group P21/c, with cell parameters, a=9.9512(3) Å, b=10.1508(3) Å, c=17.8105(5) Å, and β=95.6510(10)°. Although the two structures are different, they have the same anionic framework compositions of [Zn3(HPO3)4]2−. Their frameworks are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo pyramids by sharing vertexes. There exist channels with an eight-membered ring window along the a- and c-axis. Powder X-ray diffraction, IR spectroscopy, 31P MAS solid-state NMR, thermogravimetric and differential thermal analyses were also carried out.  相似文献   

5.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

6.
The novel silver(I)thioantimonates(III) [C4N2H14][Ag3Sb3S7] (I) (C4N2H12=1,4-diaminobutane) and [C2N2H9]2[Ag5Sb3S8] (II) (C2N2H8=ethylenediamine) were synthesized under solvothermal conditions using AgNO3, Sb, S and the amines as structure directing molecules. Both compounds crystallize as orange needles with lattice parameters a=6.669(1) Å, b=30.440(3) Å, c=9.154(1) Å for I (space group Pnma), and a=6.2712(4) Å, b=15.901(1) Å, c=23.012(2) Å, β=95.37(1)° for II (space group P21/n). In both compounds the primary building units are trigonal SbS3 pyramids, AgS3 triangles and AgS4 tetrahedra. In I the layered [Ag3Sb3S7]2− anion is constructed by two different chains. An [Sb2S4] chain running along [100] is formed by vertex sharing of SbS3 pyramids. The second chain contains a Ag3SbS5 group composed of the AgS4 tetrahedron, two AgS3 units and one SbS3 pyramid. The Ag3SbS5 units are joined via S atoms to form the second chain which is also directed along [100]. The layered anion is then obtained by condensation of the two individual chains. The organic structure director is sandwiched by the inorganic layers and the shortest inter-layer distance is about 6.4 Å. In II the primary building units are linked into different six-membered rings which form a honeycomb-like layer. Two such layers are connected via Ag-S bonds of the AgS4 tetrahedra giving the final undulated double layer anion. The structure directing ethylenediamine cations are located in pairs between the layers and a sandwich-like arrangement of alternating anionic layers and organic cations is observed. The inter-layer separation is about 5.4 Å. Both compounds decompose in a more or less complex manner when heated in an argon atmosphere. The optical band gaps of about 1.9 eV for the two compounds proof the semiconducting behavior. For II the conductivity was measured with impedance spectroscopy and amounts to σ295K=7.6×10−7 Ω−1 cm−1. At 80 °C the conductivity is significantly larger by one order of magnitude.  相似文献   

7.
A solvothermal reaction of ZnO, HCl, H3PO4, and N,N′(3-bisaminopropyl)-1,2-ethylenediamine (BAPEN) in diethyleneglycol at 160°C yields a new zinc chlorophosphate, [C8N4H26][Zn3Cl(HPO4)3(PO4)], I. The structure comprises ZnO4, ZnO3Cl, HPO4 and PO4 tetrahedral units connected through their vertices giving rise to a layered structure with 10-membered apertures. The position of the Zn and P atoms gives rise to double-four ring like building unit with one Zn missing. The fully protonated amine molecules occupy the inter-lamellar region and interacts with the framework through N-H?O hydrogen bonds. Crystal data: M=792.85, orthorhombic, space group=Pca21 (no. 29), a=9.8410(2), b=15.0912(2), c=16.1220(4) Å, V=2394.32(8) Å3, Z=4, ρcalc=2.199 g cm−3, μ(MoKα)=3.443 mm−1, R1=0.0520, wR2=0.1256 and S=1.054.  相似文献   

8.
Two novel N,N′-dialkylimidazolium thiocyanate-cadmium complexes [(R2Im)2][Cd2(SCN)6] for R=Me (3), and cyclohexyl (4) have been synthesized and characterized by single-crystal X-ray diffraction. Compound 3 crystallizes in the monoclinic unit cell dimensions of 17.468(3), 7.7273(12), 10.6750(16) Å, 104.833(2)°, and space group C2 with two [(Me2Im)2] [Cd2(SCN)6] per unit cell. The two cadmium atoms in 3 are octahedrally coordinated in 4N2S and 2N4S coordination environment, and linking into one-dimensional zigzag chains. Compound 4 belongs to the monoclinic space group Cc with unit cell of dimensions 13.3049(12), 17.5550(16), 20.8012(19) Å, 101.494(2)°, and four [(Cy2Im)2][Cd2(SCN)6]·C3H6O per unit cell. The cadmium atoms in 4 are all 3N3S hexa-coordinated with six bridging SCN ions in an fac configuration and form infinite zigzag polymeric chains. The infinite chains in 3 form an approximate hexagonal array, making triangular channels which are occupied by N,N′-dimethylimidazolium ions, whereas the chains in 4 form layered structure, and the layers are stacked perpendicularly with respect to the orientation of the infinite anionic chains alternatively. N,N′-dicyclohexylimidazolium cations and solvent molecules fill in between layers.  相似文献   

9.
The quaternary compound Rb2BaNb2Se11 has been synthesized by reacting Nb metal with an in situ formed flux of Rb2Se3, BaSe and Se at 773 K. Rb2BaNb2Se11 crystallizes in the monoclinic space group P21/c with four formula units and lattice parameters a=7.8438(5) Å, b=13.6959(6) Å, c=17.0677(13) Å, β=97.917(9)°. The structure consists of one-dimensional anionic chains formed by interconnection of dimeric [Nb2Se11] units. The chains are directed along the crystallographic c-axis with Rb+ and Ba2+ ions being located between the chains. The [Nb2Se11] units are formed by face sharing of two NbSe7 bipyramids and are joined by Se22− dianions to form infinite 1[Nb2Se114−] chains. The compound was characterized with infrared spectroscopy in the FIR region, Raman and UV/Vis diffuse reflectance spectroscopy.  相似文献   

10.
A new open-framework compound, [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O, (DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH22+ (C6H14N22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO7 units. [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P21/n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2σ(I).  相似文献   

11.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

12.
A new Li-containing quaternary nitride, Li4Sr3Ge2N6, was obtained as single crystals from constituent elements in molten Na. It crystallizes in space group C2/m (No. 12) with a=6.1398(7) Å, b=10.021(1) Å, c=6.3130(7) Å, β=91.279(2)°, and Z=2. It contains the first example of isolated nitridogermanate anions of Ge2N610−, which is also the first example of edge-sharing tetrahedral [GeN4].  相似文献   

13.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

14.
A novel compound, [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a=11.0753(3) Å, b=17.8265(6) Å, c=16.5229(5) Å, and β=92.362(2)°. The structure of the compound consists of vanadium phosphite layers which are built up from the infinite one-dimensional chains of [(VO)(H2O)(HPO3)2]2− of octahedral VO5(H2O) and pseudo pyramidal [HPO3], and bridging binuclear fragments of [VO(OH)]2. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

15.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

16.
The first organically templated one-dimensional lanthanum sulfate [C4N3H16][La(SO4)3]·H2O has been prepared employing hydrothermal methods in the presence of diethylenetriamine (DETA). The structure was determined by single-crystal X-ray diffraction (XRD). The title compound crystallizes in the triclinic system, space group P-1 (No.2) with cell parameters M=551.30, a=8.2773(7) Å, b=9.5660(6) Å, c=10.4363(6) Å, α=105.661(2)°, β=102.849(3)°, γ=104.376(3)°, V=732.72(9) Å3, Z=2, R=0.0285, wR=0.0778. The structure consists of infinite linear chains. The chains are held together by hydrogen bond interactions involving the hydrogens of the amine and the framework oxygens. The as-synthesized product is characterized by powder XRD, inductive couple plasma analysis and thermogravimetric analysis.  相似文献   

17.
The preparation by hydrothermal reaction and the crystal structure of the iron(III) carboxyethylphosphonate of formula [NH4][Fe2(OH){O3P(CH2)2CO2}2] is reported. The green-yellow compound crystallizes in the monoclinic system, space group Pc(n.7), with the following unit-cell parameters: a=7.193(3) Å, b=9.776(3) Å, c=10.17(4) Å and β=94.3(2)°. It shows a typical layered hybrid organic-inorganic structure featuring an alternation of organic and inorganic layers along the a-axis of the unit cell. The bifunctional ligand [O3P(CH2)2CO2]3− is deprotonated and acts as a linker between adjacent inorganic layers, to form pillars along the a-axis. The inorganic layers are made up of dinuclear Fe(III) units, formed by coordination of the metal ions with the oxygen atoms originating from the [O3P−]2− end of the carboxyethylphosphonate molecules, the oxygen atoms of the [−CO2] end group of a ligand belonging to the adjacent layer and the oxygen atom of the bridged OH group. Each Fe(III) ion is six-coordinated in a very distorted octahedral environment. Within the dimer the Fe-Fe separation is found to be 3.5 Å, and the angle inside the [Fe(1)-O(11)-Fe(2)] dimers is ∼124°. The resulting 3D framework contains micropores delimited by four adjacent dimers in the (bc) planes of the unit cell. These holes develop along the a-direction as tunnel-like pores and [NH4]+ cations are located there. The presence of the μ-hydroxo-bridged [Fe(1)-O(11)-Fe(2)] dimers in the lattice is also responsible for the magnetic behavior of the compound at low temperatures. The compound contains Fe3+ ions in the high-spin state and the two Fe(III) ions are antiferromagnetic coupled. The J/k value of −16.3 K is similar to those found for other μ-hydroxo-bridged Fe(III) dimeric systems having the same geometry.  相似文献   

18.
A hydrothermal reaction of WO3, CoCl2 and 4,4′-bipyridine, yields a novel organic-inorganic hybrid compound, Co2(bpy)6(W6O19)2, at 170°C. X-ray single crystal structure determination reveals a two-dimensional covalent structure belonging to monoclinic crystal system, space group C2/c, with cell parameters a=19.971(4) Å, b=11.523(2) Å, c=16.138(3) Å, β=96.49(3)°, V=3690.0 Å3 and Z=2. The hexatungstate, [W6O19]2−, acts as a building block in bidentate fashion to bridge the Co(II) centers in the crystal structure. The title compound is found to have an optical energy gap of 2.2 eV from UV-Vis-NIR reflectance spectra.  相似文献   

19.
A new layered indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O (1) has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, NMR and TG analyses. The inorganic layer is built up by alternation of In-centred octahedra (InO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2, PO2(=O)(OH) and PO(=O)(OH)2) forming a 4.12-net. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds. It is the first indium phosphate compound templated by a transition-metal complex and is isostructural with GaPO-CJ14. Crystal data: 1, monoclinic, space group P21/m (No. 11), a=9.1700(18) Å, b=22.6923(5) Å, c=9.9116(2) Å, β=107.87(3)°, Z=4, R1[I>2σ(I)]=0.0287 and wR2(all data)=0.0939.  相似文献   

20.
The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI3 and graphite, heated at 900-950 °C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln12(C2)3I17-type compounds (C 2/c, a=19.610(1) and 19.574(4) Å, b=12.406(2) and 12.393(3) Å, c=19.062(5) and 19.003(5) Å, β=90.45(3)° and 90.41(3)°, for Pr12(C2)3I17 and Nd12(C2)3I17, respectively). All compounds contain infinite zigzag chains of C2-centered metal atom octahedra condensed by edge-sharing into the [tcc] sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd12(C2)3I17 sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln3+)12(C26-)3(I)17(e) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd12(C2)3I17, Gd12(C2)3I17 and Dy12(C2)3I17 indicate the coexistence of competing magnetic interactions leading to spin freezing at Tf=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at TN=25 and 29 K, respectively. For Dy12(C2)3I17, a metamagnetic transition is observed at a critical magnetic field H≈25 kOe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号