首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s−2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the ‘steering wheel’ and the footrest were also investigated as well as a ‘no backrest’ condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic response of the body in a car driving posture. As the biodynamic response influences the vibration transmitted through seats, these factors should be considered in dynamic models of vehicle seating.  相似文献   

2.
The apparent mass of the human body reflects gross movements caused by whole-body vibration and can be used to predict the influence of body dynamics on seat transmissibility. With vertical excitation, various models fit the measured vertical apparent mass of the human body, but experiments also show high fore-and-aft forces on the seat (the fore-and-aft cross-axis apparent mass) that have not influenced current models. This paper defines a model that predicts the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the seated human body during vertical excitation. A three degree-of-freedom model with vertical, fore-and-aft and rotational (i.e. pitch) degrees of freedom has been developed with twelve model parameters (representing inertia, stiffness, damping, and geometry) optimised to the measured vertical apparent mass and the measured fore-and-aft cross-axis apparent mass of the body. The model provides close fits to the moduli and phases for both median data and the responses of 12 individual subjects. The optimum model parameters found by fitting to the median apparent mass of 12 subjects were similar to the medians of the same parameters found by fitting to the individual apparent masses of the same 12 subjects. The model suggests the seated human body undergoes fore-and-aft motion on a seat when exposed to vertical excitation, with the primary resonance frequency of the apparent mass arising from vertical motion of the body. According to the model, changes in the vertical, fore-and-aft, or rotational degree of freedom have an effect on the resonance in the fore-and-aft cross-axis apparent mass.  相似文献   

3.
The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s−2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.  相似文献   

4.
The driving-point dynamic responses of standing people (e.g. their mechanical impedance or apparent mass) influence their dynamic interactions with structures on which they are supported. The apparent mass of the standing body has been reported previously for vertical excitation but not for lateral or fore-and-aft excitation. Twelve standing male subjects were exposed to fore-and-aft and lateral random vibration over the frequency range 0.1-5.0 Hz for 180 s at four vibration magnitudes: 0.016, 0.0315, 0.063, and 0.125 m s−2 rms. With lateral excitation at 0.063 m s−2 rms, subjects also stood with three separations of the feet. The dynamic forces measured at the driving-point in each of the three translational axes (i.e. fore-and-aft, lateral and vertical) showed components not linearly related to the input vibration, and not seen in previous studies with standing subjects exposed to vertical vibration or seated subjects exposed to vertical or horizontal vibration. A principal peak in the lateral apparent mass around 0.5 Hz tended to decrease in both frequency and magnitude with increasing magnitude of vibration and increase with increasing separation of the feet. The fore-and-aft apparent mass appeared to peak at a frequency lower than the lowest frequency used in the study.  相似文献   

5.
The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s-2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting weight.  相似文献   

6.
7.
During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.  相似文献   

8.
A duality transformation is investigated for an Ising model in a rectangular lattice with alternate three-spin interactions in the horizontal direction and two-spin interactions in the vertical direction. The partition function is expressed by the one of the nearest-neighbour Ising model under an effective field in the rectangular lattice. It turns out that there is no phase transition in the system.  相似文献   

9.
J. Toriwaki  K. Mori 《显形杂志》1998,1(1):111-124
In this article we present the visualization of the human body basing upon the X-ray CT and MR images. Topics and examaples of images rendered by the computer are all selected from the studies in the authors’ laboratory during about twenty years. Topics are classified into four groups. First we introduce a few historical pictures of cross section images, and the surface of bones and the skull. Second, the selected pictures in the surgical simulation system NUCSS (=Nagoya University Craniofacial Surgical Simulation system) we developed are shown. This system was for the simulation of the craniofacial surgery of the skull and the orthopedic surgery of the hip joint. This was the pioneering work which showed the potential of computer aid in surgery based upon 3D CT images about ten years in advance of the present rapid extention of the computer aided surgery. One of the earliest work to visualize the performance of the soft tissue — rendering of the cut skin is also included. Third, the virtualized endoscope system is presented in detail. The images of both the inside and the outside view of the bronchus, the vessel and the stomach are shown here with the introduction to the new concept of the navigation diagnosis. Finally the navigation through an Egyptian mummy is added.  相似文献   

10.
Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: ‘upright’, ‘lordotic’, ‘anterior lean’, ‘knees bent’, and ‘knees more bent’. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously.The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5–6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.  相似文献   

11.
Direct mass spectrometric analysis of complex biological samples is very important and challenging. In this paper, nanodiamonds have been successfully used in matrix-assisted laser desorption/ionization mass spectrometric analysis of human serum and urine. As a practical tool and platform, it can be widely used in the field of humoral proteomics, and it plays a very promising role in clinical diagnosis, including identification of novel disease-associated biomarkers.  相似文献   

12.
13.
Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented ‘standard’ body measurement methods in a handbook in 1928.2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.  相似文献   

14.
15.
The aim of this study was to measure the shear modulus of the vocal fold in a human hemilarynx, such that the data can be related to direction of applied stress and anatomical context. Dynamic spring rate data were collected using a modified linear skin rheometer using human hemilarynges, and converted to estimated shear modulus via application of a simple shear model. The measurement probe was attached to the epithelial layer of the vocal fold cover using suction. A sinusoidal force of 3g was applied to the epithelium, and the resultant displacement logged at a rate of 1kHz. Force measurement accuracy was 20microg and position measurement accuracy was 4microm. The force was applied in a transverse direction at the midmembranous point between the vocal process and the anterior commissure. The shear modulus of the three female vocal folds ranged from 814 to 1232Pa. The shear modulus of the three male vocal folds ranged from 1021 to 1796Pa. These data demonstrate that it is possible to obtain estimates for the shear modulus of the vocal fold while preserving anatomical context. The modulus values reported here are higher than those reported using parallel plate rheometry. This is to be expected as the tissue is attached to surrounding structures, and is under natural tension.  相似文献   

16.
The vertical apparent mass of the human body exhibits nonlinearity, with the principal resonance frequency reducing as the vibration magnitude increases. Measures of the transmission of vibration to the spine and the pelvis have suggested complex modes are responsible for the dominant resonance during vertical excitation, but the modes present with dual-axis excitation have not been investigated. This study was designed to examine how the apparent mass and transmissibility of the human body depend on the magnitude of vertical excitation and the addition of fore-and-aft excitation, and the relation between the apparent mass and the transmissibility of the body. The movement of the body (over the first, fifth and twelfth thoracic vertebrae, the third lumbar vertebra, and the pelvis) in the fore-and-aft and vertical directions (and in pitch at the pelvis) was measured in 12 male subjects sitting with their hands on their laps during random vertical vibration excitation (over the range 0.25–20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 m s?2 rms). At the highest magnitude of vertical excitation (1.0 m s?2 rms) the effect of adding fore-aft vibration (at 0.25, 0.5, and 1.0 m s?2 rms) was investigated. The forces in the vertical and fore-and-aft directions on the seat surface were also measured so as to calculate apparent masses. Resonances in the apparent mass and transmissibility to the spine and pelvis in the fore-and-aft and vertical directions, and pitch transmissibility to the pelvis, shifted to lower frequencies as the magnitude of vertical excitation increased and as the magnitude of the additional fore-and-aft excitation increased. The nonlinear resonant behaviour of the apparent mass and transmissibility during dual-axis vibration excitation suggests coupling between the principal mode associated with vertical excitation and the cross-axis influence of fore-and-aft excitation. The transmissibility measures are consistent with complex modes contributing to motion of the body at the principal resonance: pitch motions of the upper thoracic and lumbar spine, and vertical and fore-aft motion of the pelvis and spine. The mode varies with the magnitude of vertical and fore-and-aft excitation.  相似文献   

17.
The effects of acceleration amplitudes and frequencies of vertical foot vibration on mechanical and sensation responses were studied in two sets of experiments. The first experiments determined the mechanical characteristics of the foot in three seated subjects at frequencies between 5 and 1000 Hz, in terms of the driving point mechanical impedances and acceleration transmission ratios between the foot and lower leg. In the second set of experiments, sensation scales for foot vibrations were determined in ten seated subjects at octave center frequencies between 8 and 400 Hz, which involved equal sensations of continuous and impulsive motions, sensation magnitudes, and rating of five successive categories of sinusoidal motion. Contours of mechanical and sensational responses are presented. Using the results obtained, a foot response meter was made and used in a field survey to evaluate foot vibration.  相似文献   

18.
The standard problem of a radial motion of test particles in the stationary gravitational field of a spherically symmetric celestial body is solved and is used to determine the time features of this motion. The problem is solved for the equations of motion of general relativity (GR), and the time features are obtained in the post-Newtonian approximation, with linear GR corrections proportional to r g /r and β 2 (in the solution being considered, they are of the same order of smallness) being taken rigorously into account. Total times obtained by integrating the time differentials along the trajectories of motion are considered as the time features in question. It is shown that, for any parameters of the motion, the proper time (which corresponds to watches comoving with a test particle) exceeds the time of watches at rest (watches at the surface of the celestial body being considered). The mass and the radius of the celestial body, as well as the initial velocity of the test particle, serve as arbitrary parameters of the motion. The time difference indicated above implies a leading role of the gravitational redshift, which decreases somewhat because of the opposite effect of the Doppler shift. The results are estimated quantitatively for the important (from the experimental point of view) case of vertical flights of rockets starting from the Earth’s surface. In this case, the GR corrections, albeit being extremely small (a few microseconds for several hours of the flight), aremeasurable with atomic (quantum) watches.  相似文献   

19.
20.
余田  张国华  孙其诚  赵雪丹  马文波 《物理学报》2015,64(4):44501-044501
研究了垂直振动激发下钨颗粒的动态有效质量(ω) 和耗散功率p(ω)随频率ω 的依赖关系. 实验发现, 在给定的振动幅度下, 自由表面样品有效质量的实数部分M1 (ω) 、虚数部分M2 (ω) 以及耗散功率p(ω)随频率的变化曲线均出现一个尖锐的共振峰. 随着在颗粒上表面施加压强的增大, M1 (ω), M2 (ω) 和耗散功率p(ω)曲线的峰值频率向高频移动, 且峰值高度也相应增大. 进一步研究发现, 有效质量实数部分的共振频率fg 随表面压强P的变化满足分段幂律规律, 当P较小时, 幂指数为0.3, 当P较大时, 幂指数减小为1/6. 颗粒系统的品质因子的倒数1/Q随压强P的变化满足指数衰减规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号