共查询到20条相似文献,搜索用时 0 毫秒
1.
The heat capacity and the heat content of bismuth niobate BiNbO4 and bismuth tantalate BiTaO4 were measured by the relaxation method and Calvet-type heat flux calorimetry. The temperature dependencies of the heat capacities in the form Cpm=128.628+0.03340 T−1991055/T2+136273131/T3 (J K-1 mol-1) and 133.594+0.02539 T−2734386/T2+235597393/T3 (J K-1 mol-1) were derived for BiNbO4 and BiTaO4, respectively, by the least-squares method from the experimental data. Furthermore, the standard molar entropies at 298.15 K Sm(BiNbO4)=147.86 J K-1 mol-1 and Sm(BiTaO4)=149.11 J K-1 mol-1 were assessed from the low temperature heat capacity measurements. To complete a set of thermodynamic data of these mixed oxides an attempt was made to estimate the values of the heat of formation from the constituent binary oxides. 相似文献
2.
J. Leitner M. Hampl K. Ri
ka D. Sedmidubský P. Svoboda J. Vejpravov 《Thermochimica Acta》2006,450(1-2):105-109
The heat capacities and enthalpy increments of strontium bismuth niobate SrBi2Nb2O9 (SBN) and strontium bismuth tantalate SrBi2Ta2O9 (SBT) were measured by the relaxation method (2–150 K), Calvet-type heat-conduction calorimetry (305–570 K) and drop calorimetry (773–1373 K). The temperature dependences of non-transition heat capacities in the form Cpm = 324.47 + 0.06371T − 5.0755 × 106/T2 J K−1 mol−1 (298–1400 K) and Cpm = 320.22 + 0.06451T − 4.7001 × 106/T2 J K−1 mol−1 (298–1400 K) were derived for SBN and SBT, respectively, by the least-squares method from the experimental data. Furthermore, the standard molar entropies at 298.15 K Sm°(SBN)=327.15±0.80 and Sm°(SBT)=339.23±0.72 J K−1 mol−1 were evaluated from the low-temperature heat capacity measurements. 相似文献
3.
4.
J. Leitner M. Hampl K. Ri
ka M. Straka D. Sedmidubský P. Svoboda 《Thermochimica Acta》2008,475(1-2):33-38
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements. 相似文献
5.
J. Leitner K. Růžička D. Sedmidubský P. Svoboda 《Journal of Thermal Analysis and Calorimetry》2009,95(2):397-402
Heat capacity and enthalpy increments of calcium niobates CaNb2O6 and Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (669–1421 K). Temperature dependencies
of the molar heat capacity in the form C
pm=200.4+0.03432T−3.450·106/T
2 J K−1 mol−1 for CaNb2O6 and C
pm=257.2+0.03621T−4.435·106/T
2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S
m0(CaNb2O6, 298.15 K)=167.3±0.9 J K−1 mol−1 and S
m0(Ca2Nb2O7, 298.15 K)=212.4±1.2 J K−1 mol−1, were evaluated from the low temperature heat capacity measurements. Standard enthalpies of formation at 298.15 K were derived
using published values of Gibbs energy of formation and presented heat capacity and entropy data: Δf
H
0(CaNb2O6, 298.15 K)= −2664.52 kJ molt-1 and Δf
H
0(Ca2Nb2O7, 298.15 K)= −3346.91 kJ mol−1. 相似文献
6.
Michael H. G. Jacobs Klaus Hack Bengt Hallstedt 《Journal of Solid State Electrochemistry》2007,11(10):1399-1404
We present enthalpy and heat capacity calculations under reversible conditions in which a system is allowed to reach equilibrium
after incremental steps in temperature. We focus on the binary systems Ag–Cu and 1,3,5 tri-bromo-benzene and 1,3,5 tri-chloro-benzene
and show that due to the compositional effect, thermodynamic properties differ up to an order of magnitude in two-phase regions
relative to values in single-phase regions. We demonstrate that Planck’s definition of heat capacity needs a minor extension
to include the change of phase assemblages due to phase transitions.
Dedicated to Professor Su-II Pyun on the occasion of his 65th birthday 相似文献
7.
The heat capacity of copper hydride has been measured in the temperature range 2–60 and 60–250 K using two adiabatic calorimeters. Special procedure for the purification of CuH has been applied and a careful analysis of sample contamination has been performed. The experimental results have been extrapolated up to 300 K due to instability of the copper hydride at room temperature. From the temperature dependence of heat capacity the values of entropy S°(T), thermal part of enthalpy H°(T)−H°(0) and Gibbs function [−(G°(T)−H°(0))] have been calculated assuming S°(0)=0. The standard absolute entropy, standard entropy of formation from the elements and enthalpy of decomposition of copper hydride from the elements have been calculated and found to be 130.8 J K−1 mol−1 (H2), −85.1 J K−1 mol−1 (H2), −55.1 kJ mol−1 (H2), respectively. These new results gave the possibility of discussion on thermodynamic properties of copper hydride. Debye temperature has been for the first time determined experimentally. 相似文献
8.
The integral enthalpy of mixing of the ternary Au–Cu–Sn has been determined with a Calvet type calorimeter at 6 different cross sections at 1273 K. The substitutional solution model of Redlich–Kister–Muggianu was used for a least square fit of the experimental data in order to get an analytical expression for the integral enthalpy of mixing. The ternary extrapolation models of Kohler, Muggianu and Toop were used to calculate the integral enthalpy of mixing and to compare measured and extrapolated values. Additional calculations of the integral enthalpy of mixing using the Chou model have been performed. With the calculated data, the iso-enthalpy lines have been determined using the Redlich–Kister–Muggianu model. A comparison of the data has been made. 相似文献
9.
10.
《Thermochimica Acta》2003,401(2):169-173
The heat capacity and the heat content of gallium nitride were measured by calvet calorimetry (320-570 K) and by drop calorimetry (670-1270 K), respectively. The temperature dependence of the heat capacity in the form Cpm=49.552+5.440×10−3T−2.190×106T−2+2.460×108T−3 was derived by the least squares method. Furthermore, thermodynamic functions calculated on the basis of our experimental results and literature data on the molar entropy and the heat of formation of GaN are given. 相似文献
11.
The heat capacity of LuPO4 was measured in the temperature range 6.51-318.03 K. Smoothed experimental values of the heat capacity were used to calculate the entropy, enthalpy and Gibbs free energy from 0 to 320 K. Under standard conditions these thermodynamic values are: (298.15 K) = 100.0 ± 0.1 J K−1 mol−1, S0(298.15 K) = 99.74 ± 0.32 J K−1 mol−1, H0(298.15 K) − H0(0) = 16.43 ± 0.02 kJ mol−1, −[G0(298.15 K) − H0(0)]/T = 44.62 ± 0.33 J K−1 mol−1. The standard Gibbs free energy of formation of LuPO4 from elements ΔfG0(298.15 K) = −1835.4 ± 4.2 kJ mol−1 was calculated based on obtained and literature data. 相似文献
12.
Heat capacity data at various temperatures and enthalpies of dilution at 25°C are reported for aqueous bile salt solutions. The apparent molal heat contents
L have been combined with osmotic and activity coefficients to obtain the excess molal entropies. Measurements of some of these properties have also been carried out with the anionic detergent sodium dodecylsulfate so that the bile salt micellization process may be compared with that of a classical detergent. The observed data have been interpreted in terms of the hydrophobic association properties of bile salts in aqueous solution. 相似文献
13.
A common assumption in the glass science community is that the entropy of a glass can be calculated by integration of measured heat capacity curves through the glass transition. Such integration assumes that glass is an equilibrium material and that the glass transition is a reversible process. However, as a nonequilibrium and nonergodic material, the equations from equilibrium thermodynamics are not directly applicable to the glassy state. Here we investigate the connection between heat capacity and configurational entropy in broken ergodic systems such as glass. We show that it is not possible, in general, to calculate the entropy of a glass from heat capacity curves alone, since additional information must be known related to the details of microscopic fluctuations. Our analysis demonstrates that a time-average formalism is essential to account correctly for the experimentally observed dependence of thermodynamic properties on observation time, e.g., in specific heat spectroscopy. This result serves as experimental and theoretical proof for the nonexistence of residual glass entropy at absolute zero temperature. Example measurements are shown for Corning code 7059 glass. 相似文献
14.
D. D. K. Chingakule P. Gans J. B. Gill P. J. Longdon 《Monatshefte für Chemie / Chemical Monthly》1992,123(6-7):521-535
Summary The vibrational spectra of solutions have been analyzed to assess both qualitatively and quantitatively the changes in enthalpy and entropy for ion pair formation in solutions of LiNCS, Mg(NCS)2, and LiN3 in liquid ammonia, dimethylformamide, dimethylsulphoxide and acetonitrile. Contrary to predictions both the H
ass
and S
ass
terms are all positive in the cases examined, indicating that the driving force in the ion association process derives from solvent-solute restructuring, and not the energy of the interaction between the cation and anion. This characteristic of contact ion pair formation is likely to be found to be applicable over a wide range of solvents. The following specific values of the thermodynamic parameters at 298 K have been obtained: LiNCS/DMF, G=–1.3 (1) kJ mol–1, H
ass
=+1.8 (5) kJ mol–, S
ass
=+10 (2) J mol–1 K–1; LiNCS/DMSO, G=+0.9 (2) kJ mol–1, H
ass
=+0.3 (3) kJ mol–1; Mg(NCS)2/DMF, G
ass
=–4.0 (3) kJ mol–1, H
ass
=+15 (4) kJ mol–1, S=+64 (17) kJ mol–1; LiN3/DMSO, G
ass
=–2.5 (3) kJ mol–1, H
ass
=+4.9 (9) kJ mol–1, S
ass
=+25 (10) J K–1 mol–1.Submitted to celebrate the 70th Birthday of Professor Viktor Gutmann, and in recognition of his considerable contributions towards the better understanding of Chemistry in the Solution Phase 相似文献
15.
The phases Bi14MO24 (M=Cr, Mo, W) have been studied using differential scanning calorimetry, variable temperature X-ray powder diffraction and neutron powder diffraction. All three compounds were found to undergo a phase change, on cooling, from the previously reported tetragonal symmetry (I4/m) to monoclinic symmetry (C2/m). Transition temperatures were determined to be ∼306 K (M=W) and ∼295 K (M=Mo), whereas a gradual transition between 275 and 200 K was observed for M=Cr. The high and low temperature structures are very similar, as indicated by the relationship between the monoclinic and tetragonal unit cell parameters: am=√2at, bm=ct, cm=at, β∼135°. High-resolution neutron powder diffraction data, collected at 400 and 4 K, were used to establish the nature of the transition, which was found to involve a reduction in the statistical possibilities for orientation of the MO4 tetrahedra. However, in both tetragonal and monoclinic variants, a degree of orientational disorder of the tetrahedra occurs to give partially occupied sites in the average unit cell. 相似文献
16.
O. Yamamuro Y. P. Handa M. Oguni H. Suga 《Journal of inclusion phenomena and macrocyclic chemistry》1990,8(1-2):45-58
The heat capacity of structure I ethylene oxide clathrate hydrate EO-6.86 H2O was measured in the temperature range 6–300 K with an adiabatic calorimeter. The temperature and enthalpy of congruent melting were determined to be (284.11 ± 0.02) K and 48.26 kJ mol–1, respectively. A glass transition related to the proton configurational mode in the hydrogen-bonded host was observed around 90 K. This glass transition was similar to the one observed previously for the structure II tetrahydrofuran hydrate but showed a wider distribution of relaxation times. The anomalous heat capacity and activation enthalpy associated with the glass transition were almost the same as those for THF-hydrate.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.Author for correspondence. 相似文献
17.
18.
19.
The long path to an understanding of heat capacity is traced from isothermal and adiabatic calorimetries to the most recent three methods of isoperibol, scanning, and temperature-modulated calorimetry (TMDSC). These latter three methods are: the traditional method of scanning thermal analysis; the quasi-isothermal method of finding the maximum amplitude of the periodic heat flow in response to a temperature modulation at a constant base temperature; and the pseudo-isothermal analysis of a temperature-modulated scanning experiment by subtracting the effect due to the underlying constant heating rate. In parallel, the development of the knowledge about phases and molecules is traced from its beginning to present-day nanophases and macromolecules. 相似文献
20.
V. Rodríguez-González X. L. García-Montelongo L. L. Garza-Tovar Soo Wohn Lee L. M. Torres-Martínez 《Research on Chemical Intermediates》2009,35(2):187-196
In this work the preparation and photocatalytic properties of strontium tantalum oxides with perovskite-type structures are
presented. The perovskite-type oxides were prepared by the sol–gel method and annealed at 800, 900 and 1,000 °C for 36 h.
Before and after annealing the solids were characterized by XRD, N2 adsorption (BET), UV–visible (diffuse reflectance), FTIR, TGA–DTA, and SEM-EDS techniques. The X-ray diffraction patterns
of the samples showed the coexistence of three strontium tantalate oxides, Sr2Ta2O7, SrTa4O11, and Sr5Ta4O15, the relative amounts of which were highly dependent on the annealing temperature. It has been proposed that the photoactivity
of the oxides in the decomposition of crystal violet dye could be related to the proportion of the Sr2Ta2O7 phase in the annealed samples. 相似文献