首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The self-broadening coefficients and intensities of approximately 460 of the strongest water vapour lines (intensity S ? 1.5 × 10−23 cm molec−1) in the spectral region 5000-5600 cm−1 have been derived from new laboratory measurements. The derived line intensities are on average in a good agreement with those in HITRAN-2001 (v.11.0) (within 0.5% for total band intensity). Self-broadening coefficients are compared with values estimated from the HITRAN-2001 foreign-broadening coefficients. Comparison has been also made with the recent HITRAN-2004 (v.12.0) compilation, which revealed marked systematic differences in the self-broadening coefficients (up to 20%) and in the line intensities (up to 5%). The possible reasons for these deviations are discussed.  相似文献   

2.
This paper presents results from an intercomparison of self-broadening coefficients and intensities of approximately 440 of the strongest water vapour lines in the spectral region 5000-5600 cm−1. Line parameters retrieved and reported recently by two scientific groups, both using Fourier transform spectroscopy, are compared with parameters taken from the HITRAN-2008 database and with theoretical linelist BT2. This comparison has revealed marked systematic differences in the self-broadening coefficients (up to 20%) and to lesser degree in the line intensities (up to 6%) between different sources.  相似文献   

3.
A methane spectral line list for the 5550-6236 cm−1 range with the intensity cut off 4×10−26 cm/molecule at 296 K is presented. The line list is based on new extensive measurements of methane spectral line parameters performed at different temperatures and pressures of methane and buffer gases N2, O2 and air. This spectral line list is prepared in HITRAN-2008 format and contains the following spectral line parameters of about 11,000 lines: position, intensity, energy for lower state (where possible), air-broadening and air-shifting coefficients, exponent of temperature dependence of air-broadening coefficient and self-broadening coefficient.  相似文献   

4.
The absolute line intensities of the Fermi triad 2003i-00001 (i = 1, 2, 3) of 12C16O2 and 13C16O2 isotopic species of carbon dioxide were retrieved from Fourier-transform spectra recorded at Doppler limited resolution in the region 9200-9700 cm−1. The accuracy of the line intensity determination is estimated to be better than 15% for most lines. The vibrational transition dipole moments squared and Herman-Wallis coefficients have been determined. The global fittings of the observed line intensities within the framework of the effective operators method have been performed. The fitting results reproduce the data within experimental uncertainty.  相似文献   

5.
We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO2. A reference temperature is 296 K and an intensity cutoff is 10−27 cm−1/molecule cm−2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm−1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO2, including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site ftp://ftp.iao.ru/pub/CDSD-4000.  相似文献   

6.
To provide line parameters for the near-infrared methane spectrum, 35,306 line positions and intensities at room temperature were retrieved between 6180 and 9200 cm−1, along with 4936 lines between 4800 and 5500 cm−1. For this, laboratory absorption spectra were recorded at 0.010-0.022 cm−1 resolution using the McMath-Pierce Fourier Transform Spectrometer located on Kitt Peak in Arizona. Positions were calibrated using CO transitions at 2.3 and 1.6 μm and H2O lines at 1.9 and 1.3 μm. The minimum line intensity included was 3.7×10−26 cm−1/(molecule cm−2), and the combined sum of the intensities in these two intervals was 7.085×10−20 cm−1/(molecule cm−2) at 296 (±4) K. Quantum assignments from the literature were matched for 1% of the features, and a new methane database was compiled for the near-infrared.  相似文献   

7.
A comparison of the atmospheric absorption calculated with different data banks of water vapour absorption lines is made. The HITRAN database, Barber-Tennyson line list (BT2), calculation of Partridge and Schwenke (PS) are considered. The contribution of H2O lines, absent in HITRAN, to the atmospheric transmission, calculated with 10 cm−1 spectral resolution in the 10 000-20 000 cm−1 spectral region is up to 1.5% for a vertical path and 4% for a solar zenith angle of 70 deg. The highest difference is observed in the 940 nm band. The incoming fluxes of solar radiation, measured by a rotating solar spectroradiometer, were modeled with BT2 and HITRAN database. The difference between measured and calculated fluxes does not exceed the instrumental uncertainties.  相似文献   

8.
Line intensities of 12C16O2 transitions have been measured by CW-Cavity Ring Down Spectroscopy in four wavenumber intervals near 1.6 μm. Intensity values of 952 transitions ranging from 1.10 × 10−28 to 4.94 × 10−25 cm/molecule were retrieved with an average accuracy of 4%. These transitions belong to a total of 30 bands corresponding to the ΔP = 9 series of transitions. The achieved sensitivity (noise equivalent absorption αmin ∼ 3 × 10−10 cm−1) allows lowering by more than two orders of magnitude the lower intensity values measured in the region. Comparison with the values included in the JPL database [R.A. Toth, L.R. Brown, C.E. Miller, V. Malathi Devi, D.C. Benner, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 906-921] shows residuals exceeding one order of magnitude for weak lines. The measured intensities together with a selection of experimental intensities available in the literature were used to extend and refine the set of effective dipole moment parameters for the ΔP = 9 series of transitions of the principal isotopologue of carbon dioxide. The refined parameters allow reproducing, within the experimental uncertainties, the whole set of intensity measurements which extends over nearly six orders of magnitude (1.10 × 10−28-6.12 × 10−23 cm/molecule). Combining the CW-CRDS line positions with the calculated line intensities, a line list has been generated for the whole 5851-7045 cm−1 region and is provided as Supplementary Material. The obtained effective dipole moment parameters have also been used to generate the ΔP = 9 series of transitions included in the new version of the CDSD database. The comparison of the CDSD line intensities with the values provided by the HITRAN-2004 database shows discrepancies up to 80% for some of the bands while discrepancies up to three orders of magnitude are noted for the weakest bands included in the JPL database.  相似文献   

9.
The absorption spectrum of natural water vapour around 1.5 μm has been recorded with a typical sensitivity of 5 × 10−10 cm−1 by using a CW-cavity ring down spectroscopy set up based on fibred DFB lasers. A series of 31 DFB lasers has allowed a full coverage of the 6130.8-6748.5 cm−1 (1.63-1.48 μm) region corresponding to the H transparency band of the atmosphere. The line parameters (wavenumber and intensity) of a total of 5190 lines, including 4247 lines of water vapor, were derived by a one by one fit of the lines to a Voigt profile. Different isotopologues of water (H216O, H218O, H217O, and HD16O) present in natural abundance in the sample contribute to the spectrum. For the main isotopologue, H216O, 2130 lines were measured with line intensities as weak as 10−29 cm/molecule while only 926 lines (including a proportion of 30% inaccurate calculated lines) with a minimum intensity of 3 × 10−27 cm/molecule are provided by the HITRAN and GEISA databases. Our comparison in the whole 5750-7965 cm−1 region, has also evidenced that an error in the process of conversion of the intensity units from cm−2/atm to cm−1/(molecule × cm−2) at 296 K, has led to H216O line intensities values listed in the HITRAN-2000 database, systematically 8 % below the original FTS values. The rovibrational assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge with a subsequent refinement and validation using the Ritz combination principle together with all previously measured water transitions relevant to this study. This procedure allowed determining 172, 139, 71, and 115 new energy levels for the H216O, H218O, H217O, and HD16O isotopologues, respectively. The results are compared with the available databases and discussed in regard of previous investigations by Fourier transform spectroscopy. The spectrum analysis has showed that most of the transitions which cannot be assigned to water are very weak and are due to impurities such as carbon dioxide and ammonia, leaving only about 3% of the observed transitions unassigned. The interest of a detailed knowledge of water absorption for trace detectors developed in the 1.5 μm range is underlined: for instance HDO contributes significantly to the considered spectrum while no HDO line parameters are provided by the HITRAN database.  相似文献   

10.
The room temperature absorption spectrum of formaldehyde, H2CO, from 6547 to 6804 cm−1 (1527-1470 nm) is reported with a spectral resolution of 0.001 cm−1. The spectrum was measured using cavity-enhanced absorption spectroscopy (CEAS) and absorption cross-sections were calculated after calibrating the system using known absorption lines of H2O and CO2. Several vibrational combination bands occur in this region and give rise to a congested spectrum with over 8000 lines observed. Pressure broadening coefficients in N2, O2, and H2CO are reported for an absorption line at 6780.871 cm−1, and in N2 for an absorption line at 6684.053 cm−1.  相似文献   

11.
In this paper, we describe new high-resolution measurements of the absorption spectrum of 14NH3 in the 6850-7000 cm−1 region using cavity-enhanced absorption spectroscopy (CEAS), and Fourier-transform spectroscopy (FTS) between ∼6400 and 6900 cm−1. The CEAS measurements were used to determine line positions, line intensities (cross-sections) and pressure-broadening parameters, the latter in three different bath gases. A total of 1117 NH3 lines were observed. The accuracy of the line positions is about 0.001 cm−1, and absorptions cross-sections as low as 1×10−23 cm2 molecule−1 are reported.  相似文献   

12.
Absolute line intensities of 13C16O2 were retrieved from high-resolution Fourier transform spectra recorded in the region 3090-3920 cm−1. The uncertainty of the line intensity determination is estimated to be between 3 and 5% for the strong lines. The global fittings of the observed line intensities within the framework of the effective operators approach have been performed, reaching the experimental accuracy. A comparison of newly measured line intensities with those found in the HITRAN database is presented.  相似文献   

13.
Line intensities of 13C16O2 have been measured between 5851 and 6580 cm−1 using CW-cavity ring down spectroscopy (CRDS) and in the 4700-5050 and 6050-6850 cm−1 regions using Fourier transform spectroscopy. As a result of the high sensitivity (noise equivalent absorption αmin∼3×10−10 cm−1) and high dynamics allowed by CW-CRDS, accurate line intensities of 2039 transitions ranging between 1.1×10−28 and 1.3×10−23 cm−1/(molecule cm−2) were measured with an average accuracy of 4%. These transitions belong to a total of 48 bands corresponding to the ΔP=9 series of transitions. Additionally, unapodized absorption spectra of 13C-enriched samples have been recorded using a high-resolution Bruker IFS125HR Fourier transform spectrometer. Spectral resolutions of 0.004 cm−1 (maximum optical path difference (MOPD)=225 cm) and 0.007 cm−1 (MOPD=128.6 cm), and pressure×path length products in the ranges 5.2-12 and 69-450 hPa×m have been used for the lower and higher energy spectral regions, respectively. Absolute line intensities have been measured in the 2001i−00001, 3001i−00001 (i=1, 2, 3) and 00031−00001 bands. An excellent agreement was achieved for the line intensities of the 3001i−00001 (i=1, 2, 3) bands measured by both FTS and CW-CRDS. The CW-CRDS and FTS experimental intensity data together with selected intensity information from the literature have been fitted simultaneously using the effective operators approach. Two sets of effective dipole moment parameters have thus been obtained, which reproduce the observed line intensities in the 2.0 and 1.6 μm regions within experimental uncertainties.  相似文献   

14.
In a recent contribution, (Gao B, Kassi S, Campargue A. Empirical low energy values for methane transitions in the 5852-6181 cm−1 region by absorption spectroscopy at 81 K. J Mol Spectrosc 2009;253:55-63.), the low energy values of methane transitions between 1.71 and 1.62 μm were derived from the variation of the line intensities between 296 and 81 K. The line intensities at 81 K were retrieved from the high resolution absorption spectrum of methane recorded at liquid nitrogen temperature by direct absorption spectroscopy using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. For the line intensities at 296 K, the values provided by the HITRAN database were used. As a consequence of the relatively high intensity cut off (4×10−24 cm/molecule) of the HITRAN line list in the considered region, the lower energy values were derived for only 845 of the 2187 transitions measured at 81 K. In the present work, our line list was extended by the retrieval of many weak line intensities leading to a set of 3251 transitions. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule. In relation with the project “Greenhouse Gases Observing Satellite” (GOSAT), a much more complete line list for CH4 at 296 K has become available (intensity cut off of 4×10−26 cm/molecule). By applying the two temperature method to our line intensities at 81 K and GOSAT intensities at 296 K, the lower energy values of 2297 transitions could be derived. These transitions represent 99.1% and 90.8% of the total absorbance in the region, at 81 and 296 K respectively. This line list provided as Supplementary Material allows then accounting for the temperature dependence of CH4 absorption below 300 K. The investigated spectral range is dominated by the 2ν3 band near 6005 cm−1 which is of particular interest for atmospheric retrievals. The factor 2 narrowing of the Doppler linewidth from room temperature down to 81 K has allowed the resolution of a number of 2ν3 multiplets and improving the line intensity retrievals. A detailed comparison with GOSAT and HITRAN line lists has revealed a number of possible improvements.  相似文献   

15.
Over 8000 line positions and intensities of phosphine (PH3) at 3 μm have been measured at 0.0115 cm−1 resolution with the McMath-Pierce Fourier Transform spectrometer at Kitt Peak. The observed line intensities ranged from 4.13 × 10−6 to 4.69 × 10−2 cm−2 atm−1 at 296 K, for line positions between 2724.477 and 3601.652 cm−1. This region spans eight interacting vibrational states: 3ν2 (2940.8 cm−1), 2ν2 + ν4 (3085.6 cm−1), ν2 + 2ν4 (3214.9 cm−1), ν1 + ν2 (3307.6 cm−1), ν2 + ν3 (3310.5 cm−1), 3ν4 (∼3345 cm−1), ν1 + ν4 (3426.9 cm−1), and ν3 + ν4 (3432.9 cm−1). Assignments have been determined for all the bands except 3ν4 (a weak band in a highly congested area) for a total of 4232 transitions. The total integrated intensity for this region is 5.70 cm−2 atm−1 near 296 K, and assigned lines account for 79% of the observed absorption. The two strongest bands in the region are ν1 + ν4 and ν3 + ν4 with band strengths at 296 K of 1.61 and 2.01 cm−2 atm−1, respectively. An empirical database of PH3 line parameters (positions, intensities, and assignments) is now available. Lower state energies (corresponding to assignments from this study) and line widths from the literature are included; default values are used for unassigned features.  相似文献   

16.
The absorption spectrum of water vapor has been investigated by Intracavity Laser Absorption Spectroscopy (ICLAS) between 13 540 and 14 070 cm−1. This spectrum is dominated by relatively strong transitions of the 4δ polyad of vibrational states. The achieved sensitivity - on the order of αmin ∼ 10−9 cm−1 - has allowed one to newly measure 222 very weak transitions with intensities down to 5 × 10−28 cm/molecule at 296 K. Fifty new or corrected H216O energy levels belonging to a total of 13 vibrational states could be determined from the rovibrational analysis based on variational calculations by Schwenke and Partridge. The previous investigations in the region by Fourier Transform Spectroscopy were critically evaluated and used to construct the best to date set of energy levels accessed by transitions in the considered region. All the rovibrational transitions reaching these upper energy levels and having intensities larger than 4.0 × 10−28 cm/mol were calculated. In the resulting line list, the positions at the level of experimental accuracy were augmented with variational intensities leading to the most complete line list for water in normal isotopic abundance in the 13 500-14 100 cm−1 region.  相似文献   

17.
MIPAS (Michelson Interferometer for Passive Atmosphere Sounding) is a high spectral resolution interferometer (0.035 cm−1 unapodized) covering a very wide spectral range (from 4.16 to 16.4 μm) with high sensitivity that was successfully launched on the 1st of March 2002 on the European Envisat satellite. MIPAS has measured spectra of the Earth’s upper atmosphere in the 4.3 μm region with the highest spectral resolution so far reached in this altitude region. This high spectral resolution permitted to obtain the frequency position of ro-vibrational NO+ transitions with an unprecedented accuracy. It has been found that the spectral line positions of the NO+ (1-0) ro-vibrational band are shifted by about ∼0.15 cm−1 with respect to those listed in the HITRAN 2004 compilation. Also, spectral line positions of the NO+ (2-1) ro-vibrational band are shifted by approximately 0.05-0.1 cm−1 with respect to those listed in the HITRAN 2004 compilation. A new set of Hamiltonian constants for NO+ has been derived from MIPAS data which is suggested to be used in future HITRAN compilations.  相似文献   

18.
19.
A line list for D2 16O isotopologue of water molecule was calculated in the region 0-16,000 cm−1 with energy levels up to J=30. Variational calculations are based on the semi-theoretical potential energy surface obtained by morphing ab initio potential using the experimental energy levels of D2 16O. For energy levels with J=0, 2, 5 and 10, the standard deviation of the fit is 0.023 cm−1. This line list should make an excellent starting point for spectroscopic modeling and analysis of D2O rovibrational spectra.  相似文献   

20.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by direct absorption spectroscopy between 1.36 and 1.30 μm (7351-7655 cm−1) using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. The investigated spectral range corresponds to the high energy part of the icosad dominated by the ν2+2ν3 band near 7510 cm−1. The positions and strengths at 81 K of 3473 transitions were obtained from the spectrum analysis. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule, i.e. significantly lower than the intensity cut off of the HITRAN database in the region (4×10−25 cm/molecule at 296 K). From the variation of the line strength between 81 and 296 K, the low energy values of 1273 transitions could be determined. They represent 69% and 81% of the absorbance in the region at 296 and 81 K, respectively. The obtained results are discussed in relation with the few rovibrational assignments previously reported in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号