首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Compounds Ln3MO7, where Ln = La, Nd, Gd, Ho, Er, Y, or Sc, and M = Nb, Ta, or Sb have been examined by powder X-ray diffraction, electron diffraction, and electron microscopy. For large Ln cations, an orthorhombic fluorite-related superstructure is formed, of probable space group Cmcm for Ln = La and C2221 for Ln = Nd, Gd, Ho, or Y, while for the smaller Ln cations, Er, and under some conditions, Ho and Y, the structure is defect fluorite containing microdomains of ordered, but undetermined, structure. The composition Sc3MO7 was not single phase under the conditions used. Compounds of the type Ln2ScMO7 have the pyrochlore structure.  相似文献   

2.
RbF-LnF3 (Ln=rare earth) systems were synthesized by hydrothermal technique. Under the hydrothermal condition, the light rare-earth elements form LnF3 (Ln=La-Nd), while the heavy ones form RbLn2F7 (Ln=Y, Er, Yb and Lu) with the RbEr2F7 structure type. RbLn3F10 compounds were found for the in-between rare-earth cations (Ln=Eu-Tm and Y), which crystallize exclusively in the cubic γ-KYb3F10-type structure. The luminescent properties under vacuum ultraviolet light were studied for the Eu3+-doped RbLn3F10 (Ln=Y, Gd) and a high quantum efficiency of about 150% was observed for RbGd3F10:Eu3+.  相似文献   

3.
A new series of gallozincates LnBaZn3GaO7 (Ln=La, Nd, Sm, Eu, Gd, Dy, Y) and new aluminozincates LnBaZn3AlO7 (Ln=Y, Eu, Dy) have been synthesized. Their structure refinements show that these phases belong to the “114” series, with hexagonal P63mc space group previously described for SmBaZn3AlO7. The photoluminescence study of these oxides shows that the Eu3+ activated LnBaZn3MO7 oxides with Ln=Y, La, Gd; and M=Al, Ga exhibit strong magnetic and electric dipole transitions (multiband emission) which is of interest for white light production. These results also confirm that the site occupied by Eu3+ is not strictly centrosymmetric. The electric dipole transition intensity is the highest in GdBaZn3MO7 [M=Al, Ga]: 0.05Eu3+ as compared with other Eu3+ activated compositions. This is due to the layer distortion around GdO6 octahedra when compared with YO6 and LaO6 octahedra.  相似文献   

4.
Solid-state compounds of general formula LnL3⋅nH2O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere. On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200°C occurs with the formation of the respective oxide, Tb4O7 and Ln2O3 (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol-1, respectively.  相似文献   

5.
The conditions of thermal decomposition of Y, La, Ce(III), Pr, Nd, Sm, and Gd aconitates have been studied. On heating, the aconitate of Ce(III) loses crystallization water to yield anhydrous salt, which then is transformed in to oxide CeO2. The aconitates of Y, Pr, Nd, Sm, Eu and Gd decompose in three stages. First, aconitates undergo dehydration to form the anhydrous salts, which next decompose to Ln2O2CO3. In the last one the thermal decomposition of Ln2O2CO3 to Ln2O3 is accompanied by endothermic effect. Dehydration of aconitate of La undergoes in two stages. The anhydrous complex decomposes to La2O2CO3; this subsequently decomposes to La2O3.  相似文献   

6.
The ternary antimonides Ln3Pd8Sb4 (Ln=Y, Gd, Tb, Dy, Ho, Er, Tm) have been synthesized for the first time. The crystal structure of Er3Pd8Sb4 has been solved from the X-ray single crystal data: own type structure, space group Fmm, a=1.3050(1) nm, RF=0.0484, RW=0.0524 for 17 free parameters and 401 reflections with F(hkl)>4σ(F). The structure of Er3Pd8Sb4 can be viewed as a ternary ordered version of the Sc11Ir4-type. The lattice parameters of the isotypic compounds Ln3Pd8Sb4 (Ln=Y, Gd, Tb, Dy, Ho, Tm) have been refined from the X-ray powder diffraction data. The magnetic and electrical properties of the compounds Ln3Pd8Sb4 (Ln=Tb, Ho, Er) have been studied down to 1.75 K. The Ho- and Er-based phases have been found to order antiferromagnetically at 2.5 and 2.0 K, respectively. For all three compounds, the magnetic susceptibility follows in the paramagnetic region the Curie-Weiss behavior with the effective magnetic moments close to the respective free trivalent ion values. All three antimonides studied exhibit metallic character of the electrical conductivity.  相似文献   

7.
 Double rare earth monomethylammonium selenates of the general formula CH3NH3 Ln (SeO4)2·5H2O (Ln = Sm, Eu, Gd, Tb, Ho, Y) were synthesized and characterized using X-ray powder diffraction and infrared spectroscopy. The thermal decomposition of the compounds were investigated using TG, DTG, and DTA techniques.  相似文献   

8.
A series of rare-earth iron borates having general formula LnFe3(BO3)4 (Ln=Y, La-Nd, Sm-Ho) were prepared and their magnetic properties have been investigated by the magnetic susceptibility, specific heat, and 57Fe Mössbauer spectrum measurements. These borates show antiferromagnetic transitions at low temperatures and their magnetic transition temperatures increase with decreasing Ln3+ ionic radius from 22 K for LaFe3(BO3)4 to 40 K for TbFe3(BO3)4. In addition, X-ray diffraction, specific heat, and differential thermal analysis (DTA) measurements indicate that the phase transition occurs for the LnFe3(BO3)4 compounds with Ln=Eu-Ho, Y, and its transition temperature increases remarkably with decreasing Ln3+ ionic radius from 88 K for Ln=Eu to 445 K for Ln=Y.  相似文献   

9.
Solid-state Ln(L)3 compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and L is 2-methoxybenzoate have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information on the composition, dehydration, coordination mode, structure, thermal behaviour and thermal decomposition.  相似文献   

10.
4,4-Dipyridyl complexes of rare-earth thiocyanates of the formulaLn(4-dipy)2(NCS)3·5H2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, 4-dipy = 4,4-dipyridyl) have been synthesized. The IR spectra of these compounds and other physical properties are discussed. The thermal decomposition of some compounds (in the order Gd ÷ Lu) has been investigated.
4,4-Dipyridylkomplexe von Seltenerdmetallthiocyanaten
Zusammenfassung Es wurden 4,4-Dipyridylkomplexe des TypesLn(4-dipy)2(NCS)3·5H2O mitLn = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu und Y dargestellt. Die IR-Spektren und andere physikalische Eigenschaften werden diskutiert und die thermische Zersetzung von einigen Verbindungen (in der Reihe Gd ÷ Lu) untersucht.
  相似文献   

11.
An investigation to determine the compounds present in the Ln2O3Nb2O5 systems (Ln = La, Gd, and Y) and attempts to activate such compounds with Ti, In, Sb, Bi, Eu, and Tb revealed that only the orthoniobate (LnNbO4) compound was a suitable host lattice and LnNbO4:Bi under 2537 Å excitation produced the best phosphors. GdNbO4:Bi is a brighter phosphor than the La and Y analogs, emitting at slightly higher energies. The position of the GdNbO4:Bi peak emission at 4500 Å is independent of the activator concentration whereas peak emissions for LaNbO4:Bi and YNbO4:Bi move to lower energies with increasing Bi concentration.  相似文献   

12.
The heats of formation of LnVO4-type salts (whereLn=Y, La, Sm, Nd, Gd and Dy) were determined by thermal analysis in the reactions of melts of stable lanthanides and V2O5 in a 1 ∶ 1 mole ratio. Heats of formation of LnVO4-type salts can be determined using non-stoichiometric mixtures of the substrates as well. With the aid of DTA the apparent activation energies of the syntheses of the orthovanadates of these lanthanides were calculated.  相似文献   

13.
The phase diagrams of 14 SrF2(Y,Ln)F3 systems are given, where Ln are all the lanthanides except Pm and Eu. The diagrams have been constructed for temperature intervals from 850°C to the melting points according to the thermal and X-ray analysis. The fusibility diagrams for 12 systems have been obtained for the first time. The oxygen content in the specimens before and after thermal treatment was checked. The thermal behavior of the three types of solid solutions has been studied: (1) with the fluorite-type defective structure and its derivatives; (2) with the defective structure of the lanthanum fluoride, and (3) α-YF3(α-UO3) types. Maxima reflecting a noticeable effect of thermal stabilization on the fluorite-type structure by the heterovalent isomorphous substitution have been found for the majority of systems (with Ln = LaHo). The Sr1?xLnxF2+x nonstoichiometric fluorite phases are formed in all the systems. Similar maxima corresponding generally to irrational compositions are present on the fusibility curves of the Ln1?ySryF3?y nonstoichiometric phases with the LaF3-type structure (tysonite). Tysonite solid solutions are in all the systems, too. Nonstoichiometric phases with the α-YF3-type structure are formed in the systems with Ln = ErLu. They are decomposed in the process of cooling and are the most unstable. The structure of the phase diagrams in the regions adjacent to lanthanide trifluorides are determined by polymorphism and morphotropy of the above-named compounds. Changes in the thermal stability of the nonstoichiometric phases and double chemical compounds in the series of lanthanides have been observed. The SrF2(Y,Ln)F3 systems studied give examples of the formation of phases with the highest concentrations of point defects among all the known binary fluoride systems (up to 50 at.%). The thermal stabilization effect of the nonstoichiometric phases with the fluorite structure results in the fact that the series of the two-component compositions is melted at considerably higher temperatures as compared with scandium fluoride, the most refractory single-component fluoride compound. This effect leads to formation of tysonite-type solid solutions with melting points exceeding 1500°C (mp of LaF3—the most refractory fluoride material with tysonite-type structure).  相似文献   

14.
The conditions of thermal decomposition of La, Ce(III), Pr, Nd, Sm, Eu and Gd diglycolates have been studied. On heating, the diglycolates of Ce(III), Pr, Eu and Gd lose crystallization water and yield anhydrous salts, which are then transformed into oxides. The diglycolates of La, Nd and Sm are decomposed in three stages. First, the diglycolates undergo dehydration to form the anhydrous salts, which are next decomposed to Ln2O2CO3. In the last step the thermal decomposition of Ln2O2CO3 to Ln2O3 takes place, accompanied by an endothermic effect.  相似文献   

15.
Magnetic and electron transport properties of four series of manganates of the composition La0.5−xLnxSr0.5MnO3 (Ln=Pr, Nd, Gd and Y) have been investigated to examine how the ferromagnetic metallic nature of the parent La compound changes over to antiferromagnetic insulating behavior, with change in Ln and x due to the associated changes in the A-site cation radius as well as the size disorder. When Ln=Pr and Nd, there is a transition from the tetragonal I4/mcm structure to the orthorhombic Immm and Imma structures at x=0.2 and 0.35, respectively. There is a gradual evolution of the properties from those of La0.5Sr0.5MnO3 to those of Pr0.5Sr0.5MnO3 or Nd0.5Sr0.5MnO3 with increase in x. Thus, when x>0.2 and >0.35, respectively, the Pr- and Nd-substituted manganates show ferromagnetic transitions followed by antiferromagnetic transitions at low temperatures, with the ferromagnetic TC decreasing with increasing x. The Gd and Y series of compounds are all orthorhombic and show a decrease in TC with the increase in x, the ferromagnetism disappearing at high x. At a value of x corresponding to the A-site cation radius of Pr0.5Sr0.5MnO3, the Gd and Y series of compounds exhibit ferromagnetism in the 250-300 K region and undergo an antiferromagnetic transition on cooling. The TCTN gap is sensitive to the disorder arising from the size mismatch.  相似文献   

16.
Summary.  Double rare earth monomethylammonium selenates of the general formula CH3NH3 Ln (SeO4)2·5H2O (Ln = Sm, Eu, Gd, Tb, Ho, Y) were synthesized and characterized using X-ray powder diffraction and infrared spectroscopy. The thermal decomposition of the compounds were investigated using TG, DTG, and DTA techniques. Corresponding author. E-mail: vrajgaonkar@yahoo.com, vrajgaonkar@mail.mu.ac.in Received November 5, 2001. Accepted (revised) March 6, 2002  相似文献   

17.
Single crystals of Ln5Ru2O12 (Ln=Pr, Nd, Sm-Tb) were grown out of either NaOH or KOH fluxes in sealed silver tubes. The crystals of all the phases were observed to be twinned as confirmed by TEM studies. The series crystallize in the C2/m monoclinic system with lattice parameters, a=12.4049(4)-12.7621(6) Å, b=5.8414(2)-5.9488(3) Å, c=7.3489(2)-7.6424(4) Å, β=107.425(3)-107.432(2)° and Z=2. The crystal structure is isotypic with the defect/disorder model of Ln5Re2O12 (Ln = Y, Gd) and consists of one dimensional edge shared RuO6 octahedral chains separated by a two dimensional LnOx polyhedral framework. Magnetic measurements indicate paramagnetic and antiferromagnetic behavior for Ln=Nd, Sm-Gd and Ln=Tb, respectively.  相似文献   

18.
The thermal decomposition of rare earth caproates with general formula Ln(C5H11COO)3 nH2O, (where Ln=Y, La-Pr, n=l; Ln=Nd-Er, n=2; Ln=Tm-Lu, n=3) were studied in an air atmosphere. On heating, the hydrated caproates are dehydrated in one step and then the anhydrous complexes decompose to the oxides (Ln2O3, Pr6O11) with formation of the intermediate Ln2O2CO3 (La, Pr-Gd) or directly to the oxides Ln2O3, CeO2, Tb4O7(Y, Ce, Tb-Lu). Caproates of rare earth elements are liquefied during dehydration.  相似文献   

19.
Structures of the double perovskites Ba2LnNbO6 (Ln=La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Y) at room temperature have been re-examined by Rietveld profile analysis of X-ray diffraction data. It was shown that the correct phase sequence across the lanthanides is I2/m (Ln=La, Pr, Nd, and Sm), I4/m (Ln=Eu, Gd, Tb, and Dy), and (Ln=Ho and Y), respectively. All phases can be derived from the ideal cubic perovskite by ordering the Ln(III) and Nb(V) ions and by out-of-phase tilting the LnO6/NbO6 octahedra around either the primitive two-fold [110]p-axis (I2/m) or the four-fold [001]p-axis (I4/m). The monoclinic P21/n structure that contains both out-of-phase and in-phase tilt around the primitive [110]p- and [001]p-axis, respectively, has not been observed for this series of compounds.  相似文献   

20.
A series of zinc oxides Ln2BaZnO5 has been synthesized for Ln = Sm, Eu, Gd, Dy, Ho, and Y. Theses phases are orthorhombic and isostructural with the copper compounds Ln2BaCuO5 previously described, as shown from the structural study of one member Y2BaZnO5. In this structure, whose framework is built up from edge- and face-sharing LnO7 polyhedra, the Zn2+ ions exhibit an unusual pyramidal coordination ZnO5. The solid solution Y2BaZn1?xCuxO5 has been studied by infrared spectroscopy and electron spin resonance (ESR). The distorted square-based pyramidal configuration of Zn2+ and Cu2+ is confirmed. The ESR spectra of diluted samples exhibit a hyperfine structure and are typical of individual Cu(II) ions. For higher Cu(II) contents, they exhibit an anisotropic broad signal which is interpreted in terms of CuCu interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号