首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this theoretical study, the response of an inductive power generator with a bistable symmetric potential to stationary random environmental excitations is investigated. Both white and Ornstein-Uhlenbeck-type excitations are considered. In the white noise limit, the stationary Fokker-Plank-Kolmagorov equation is solved for the exact joint probability density function (PDF) of the response. The PDF is then used to obtain analytical expressions for the response statistics. It is shown that the expected value of the generator's output power is independent of the potential shape leading to the conclusion that under white noise excitations, bistabilities in the potential do not provide any enhancement over the traditional linear resonant generators which have a single-well potential. In the case of Ornstein-Uhlenbeck (exponentially correlated) noise, an approximate expression for the mean power of the generator which depends on the potential shape, the generator's design parameters and the noise bandwidth and intensity is obtained. It is shown that there exists an optimal potential shape which maximizes the output power. This optimal shape guarantees an optimal escapement frequency between the potential wells which remains constant even as the noise intensity is varied.  相似文献   

2.
This work deals with the optimization of fluid viscous damper systems (FVDs) to reduce the resonant dynamic structural response of high-speed railway bridges by algebraic and numerical approaches. The presented method chooses the objective function based on the HH norm over the frequency band of interest. This function allows taking into account structural damping properties and minimizing simultaneously the structural response associated with multiple modes. Especially, the proposed objective function may also be extended to nonlinear problems to determine optimal parameters of nonlinear fluid viscous dampers which may be an interesting solution in applications where high force levels are expected in the dampers. Finally, the proposed method is validated through numerical simulations. The simulation results show that the optimal FVD coefficients obtained by using the presented method are more exact than those by the previous method. Besides, the effectiveness of the method for solving the problems with the contribution of high modes and the consideration of nonlinear FVDs is also proved.  相似文献   

3.
Stochastic response of bridges seismically isolated by lead-rubber bearings (LRB) is investigated. The earthquake excitation is modeled as a non-stationary random process (i.e. uniformly modulated broad-band excitation). The stochastic response of isolated bridge is obtained using the time-dependent equivalent linearization technique as the force-deformation behavior of the LRB is highly nonlinear. The non-stationary response of isolated bridge is compared with the corresponding stationary response in order to study the effects of non-stationary characteristics of the earthquake input motion. For a given isolated bridge system and excitation, it was observed that there exists an optimum value of the yield strength of LRB for which the root mean square (rms) absolute acceleration of bridge deck attains the minimum value. The optimum yield strength of LRB is investigated under important parametric variations such as isolation period and damping ratio of the LRB and the frequency content and intensity of earthquake excitation. It is shown that the above parameters have significant effects on the optimum yield strength of LRB. Finally, closed-form expressions for the optimum yield strength of LRB and corresponding response of the isolated bridge system are proposed. These expressions were derived based on the model of bridge with rigid deck and pier condition subjected to stationary white-noise excitation. It was observed that there is a very good comparison between the proposed closed-form expressions and actual optimum parameters and response of the isolated bridge system. These expressions can be used for initial optimal design of seismic isolation system for the bridges.  相似文献   

4.
The use of mechanical dampers for the control of the self-excited galloping of transmission lines is considered. Two particular dampers, an in-span damper and a resilient mounting, are studied, two mass representations being used. For both dampers it is possible to produce an optimum damper either by maximizing the negative damping excitation that the damped system can withstand, or by choosing the smaller logarithmic decrement of oscillation of the system to be as large as possible in the absence of excitation. These two procedures do not produce the same damper parameters. Simple analytical expressions are produced for the optimum parameters, and these are shown to agree well with numerically optimized parameters. For the in-span damper, either method of optimization gives a damper for a much wider range of ratios of the damper to conductor masses than is predicted by earlier work. For the resilient mounting the optimization based on damping gives very similar behaviour to that of the in-span damper. When aerodynamic excitation is considered for the resilient mounting, a clear optimum exists only for a small range of mass ratios. Results from a representation of the conductor by a stretched string are used to define the range of mass ratios over which the two-mass damper idealizations may be used to define damper properties.  相似文献   

5.
The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.  相似文献   

6.
This paper deals with the analysis and optimization of tuned mass dampers (TMDs). It provides design formulas for maximizing the exponential time-decay rate (ETDR) of the system transient response. A detailed analysis is presented for the classical TMD configuration, involving an auxiliary mass attached to the main structure by means of a spring and a dashpot. Analytic expressions of the optimal ETDR are obtained for any mass ratio and tuning condition. Then, a further optimization with respect to the latter is performed. The proposed method is applied also to other TMD configurations involving an auxiliary mass connected to both the main structure and the ground, as well as to a piezoelectric damping device. A justification to the well-known heuristic optimality condition based on the enforcement of coincident couples of complex conjugate poles is presented. That condition is shown, however, to fail in providing optimal solutions for some mass ratio values and/or TMD configurations, and the optimality conditions prevailing in those cases are derived. The present analysis, besides its theoretical interest, may be useful in practical applications, e.g., to assess the sensitivity of the optimal ETDR with respect to the design parameters or to promptly adjust some of those parameters during service, after any variation of the operative conditions.  相似文献   

7.
Parameters of connecting dampers between two adjacent structures and twin-tower structure with large podium are optimized through theoretical analysis. The connecting visco-elastic damper (VED) is represented by the Kelvin model and the connecting viscous fluid damper (VFD) is represented by the Maxwell model. Two optimization criteria are selected to minimize the vibration energy of the primary structure and to minimize the vibration energy of both structures. Two representative numerical examples of adjacent structures and one three-dimensional finite element model of a twin-tower with podium structure are used to verify the correctness of the theoretical approach. On the one hand, by means of theoretical analysis, the first natural circular frequencies and total mass of the two structures can be taken as parameters in the general formula to get the optimal parameters of the coupling dampers. On the other hand, using the Kanai-Tajimi filtered white-noise ground motion model and several actual earthquake records, the appropriate parameters of two types of linking dampers are obtained through extensive parametric studies. By comparison, it can be found that the results of parametric studies are consistent with the results of theoretical studies for the two types of dampers under the two optimization criteria. The effectiveness of VED and VFD is investigated in terms of the seismic response reduction of the neighboring structures. The numerical results demonstrate that the seismic response and vibration energy of parallel structures are mitigated significantly. The performances of VED and VFD are comparable to one another. The explicit formula of VED and VFD can help engineers in application of coupled structure control strategies.  相似文献   

8.
A theory of resonant optical breathers in the presence of single and biexciton transitions in an ensemble of inhomogeneously broadened semiconductor quantum dots is constructed. Explicit analytical expressions for the breather shape and parameters for experimental investigations are proposed.  相似文献   

9.
Pendulum tuned mass dampers (PTMDs) have been employed in several full-scale applications to attenuate excessive structural motions, which are mostly due to wind. Conducting periodic condition assessments of the devices to ascertain their health is necessary to ensure their continued optimal performance, which involves identifying the modal parameters of the underlying (bare) structure to which they are tuned to. Such an identification is also necessary for the design of control systems such as adaptive tuned mass dampers. Existing methods of arresting the motion of the damper to estimate the modal properties are expensive, time-consuming, and not suitable for online tuning. Instead, in this paper, parameter estimation using the Extended Kalman Filter (EKF) is proposed to undertake this task. The central task accomplished here is to estimate the dynamic characteristics of the bare structure (structure without the PTMD) from response measurements of the coupled main structure and PTMD system. The proposed methodology relies on ambient acceleration measurements of TMD-attenuated responses to estimate the bare structural modal frequencies, damping, and mode shapes, which can then be used either for condition assessment or for control. The application of EKF to modal parameter estimation is not new. However, a methodology to address the problem in wind engineering arising from stochastic disturbances present in both the measurement and state equations, and unknown process and noise covariances arising due to ambient excitations, is presented for the first time. Extensively studied for synthetic data, these two challenges have limited thus far the application of Kalman filtering to practical wind engineering parameter estimation problems using experimentally obtained measurements. In this paper, a detailed methodology is presented to address these challenges by using a modified form of the standard EKF equations, together with an algorithm to estimate the unknown disturbance and measurement noise covariances. Numerical simulations and an experimental study are both presented. Results demonstrate that the method proposed provides reliable estimates for the modal parameters required to perform condition assessment and control tasks for pendulum tuned mass dampers.  相似文献   

10.
Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls.  相似文献   

11.
Free and forced vibrations of triangular plate are investigated. Diverse types of stiffeners were attached onto the plate to suppress the undesirable large-amplitude oscillations. The governing equation of motion for a triangular plate, based on the von Kármán theory, is developed and the nonlinear ordinary differential equation of the system using Galerkin approach is obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic triangular elastic plate are presented using the two well-known analytical methods, namely, the energy balance method and the variational approach. The frequency responses in the closed-form are presented and their sensitivities with respect to the initial amplitudes are studied. An error analysis is performed and the vibration behavior, as well as the accuracy of the solution methods, is evaluated. Different types of the stiffened triangular plates are considered in order to cover a wide range of practical applications. Numerical simulations are carried out and the validity of the solution procedure is explored. It is demonstrated that the two methods of energy balance and variational approach have been quite straightforward and reliable techniques to solve those nonlinear differential equations. Subsequently, due to the importance of multiple resonant responses in engineering design, multi-frequency excitations are considered. It is assumed that three periodic forces are applied to the plate in three specific positions. The multiple time scaling method is utilized to obtain approximate solutions for the frequency resonance cases. Influences of different parameters, namely, the position of applied forces, geometry and the number of stiffeners on the frequency response of the triangular plates are examined.  相似文献   

12.
赵志伟  莫喜平  柴勇 《声学学报》2021,46(6):1242-1249
建立了弯曲圆盘换能器镜像虚源等效模型,利用脉动球源互作用原理对弯曲圆盘与其镜像虚源的互辐射作用进行理论分析,给出了互辐射阻抗及系统谐振频率的数学表达。提出了虚源互作用的低频换能器设计思想,将刚性反射板引入弯曲圆盘换能器临近辐射面的声场中,通过理论分析、有限元模拟和样机实验研究了低频换能器谐振频率与主要结构参数之间的关系。结果表明,弯曲圆盘与镜像虚源间的互辐射作用可以有效降低换能器的谐振频率,当反射板直径与弯曲圆盘辐射面直径相当时,谐振频率可降低至其自身谐振频率的50%以下;当反射板直径为弯曲圆盘辐射面直径2倍时,谐振频率可降低至37%。   相似文献   

13.
An analytic approximation method known as the homotopy analysis method (HAM) is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure (VLFS) on the surface of deep water. A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter. Based on the analytical solution the effects of different parameters are considered. We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate. The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases, and the larger density of the plate also causes analogous results. Furthermore, it is shown that the hydroelastic response of the plate is greatly affected by the high-amplitude incident wave. The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.  相似文献   

14.
This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.  相似文献   

15.
This paper is concerned with an analytical and experimental study of binary flutter of bridge deck sections. A set of analytical formulas giving the frequency and rate of growth of oscillation, the position of the equivalent center of rotation and the phase difference between bending and torsion near the critical flutter point is presented. The formulas provide an analytical basis for the previously proposed method of classification of binary flutter of bluff structures. The results of wind tunnel experiments on models with simple geometrical shapes confirm that the present formulas are applicable to a variety of structures ranging from a flat plate to much more bluff bridge deck sections.  相似文献   

16.
A consistent analytical theory is developed for coherent resonant electron tunnelling in a two-well nanostructure in the presence of a weak electromagnetic field. Simple expressions derived for the transmission coefficient and linear response of the two-well nanostructure make it possible to clarify the physics of processes and to express the gain as a function of the structure parameters. It is shown that the high-frequency response of the two-well nanostructure considerably exceeds the response of a one-well structure (resonance-tunnel diode) and that the application of a constant electric field makes it possible to tune the oscillation frequency and to increase the gain. It is concluded that two-well nanostructures can be used in designing terahertz oscillators. It is shown that, in contrast to a resonance-tunnel diode, interference of electrons between the wells and radiative “laser-type” transition play a decisive role in such structures.  相似文献   

17.
A parametric section model is formulated to synthetically describe the geometrically nonlinear dynamics of cable-stayed and suspended bridges through a planar elastic multi-body system. The four-degrees-of-freedom model accounts for both the flexo-torsional motion of the bridge deck and for the transversal motion of a pair of hangers or stay cables. After linearization around the pre-stressed static equilibrium configuration, the coupled equations of motion governing the global deck dynamics and the local cable motion are obtained. A multi-parameter perturbation method is employed to solve the modal problem of internally resonant systems. The perturbation-based modal solution furnishes, first, explicit formulae for the parameter combinations which realize the internal resonance conditions and, second, asymptotic approximations of the resonant frequencies and modes. Attention is focused on the triple internal resonance among a global torsional mode of the deck and two local modes of the cables, due to the relevant geometric coupling which maximizes the modal interaction. The asymptotic approximation of the modal solution is found to finely describe the multiple veering phenomenon which involves the three frequency loci under small variation of the most significant mechanical parameters, including terms of structural coupling or disorder. Moreover, the veering amplitude between any two of the three frequency loci can be expressed as an explicit parametric function. Finally, the disorder is recognized as the only parameter governing a complex phenomenon of triple modal hybridization involving all the resonant modes. The entire hybridization process is successfully described by an energy-based localization factor, presented in a new perturbation-based form, valid for internally resonant system.  相似文献   

18.
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.  相似文献   

19.
In this work the use of beams as auxiliary mass dampers for cantilever plates is considered. Because the cantilever plate problem, which is of strong industrial interest, does not lend itself to a Lévy-type solution, the procedure developed by Ritz is used. Structural damping is incorporated into the main and auxiliary systems by treating them as having a complex elastic modulus. With appropriate selection of the parameters, the fundamental resonance of the plate is split into two new ones with considerably suppressed responses. In order to verify the analysis, an experimental investigation was carried out and the results obtained were compared with the theory developed.  相似文献   

20.
In this paper, the simplex method, a synthetic optimization analysis method of structures with viscoelastic (VE) dampers, which is used to determine the optimal parameters and location of VE dampers, is presented. When applied to a shaking table test of the reinforced concrete structure with VE dampers, it is seen that the simplex method can act as the synthetic optimization method of structures with VE dampers. It is also found that the shock absorption effect of the VE dampers is best when the location of VE dampers is optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号