首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien–Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack.  相似文献   

2.
大量研究工作表明旋转风电叶片的主要气动噪声来自叶尖尾缘区域,一直以来都是严重影响居民生活和叶片气动性能发挥的重要因素之一.为此,针对决定叶片重要气动特性单元——二维翼型,采用有别于传统的仿猫头鹰翅膀锯齿尾缘流动控制方法,将锯齿关键尺寸参数融入到风力机翼型设计之中,从而开发仿生锯齿翼型的优化设计方法,获得低噪声与高气动性...  相似文献   

3.
The aeroacoustic sound generated from the flow around two NACA four-digit airfoils is investigated numerically, at relatively low Reynolds numbers that do not prompt boundary-layer transition. By using high-order finite-difference schemes to discretize compressible Navier–Stokes equations, the sound scattered on airfoil surface is directly resolved as an unsteady pressure fluctuation. As the wavelength of an emitted noise is shortened compared to the airfoil chord, the diffraction effect on non-compact chord length appears more noticeable, developing multiple lobes in directivity. The instability mechanism that produces sound sources, or unsteady vortical motions, is quantitatively examined, also by using a linear stability theory. While the evidence of boundary-layer instability waves is captured in the present result, the most amplified frequency in the boundary shear layer does not necessarily agree with the primary frequency of a trailing-edge noise, when wake instability is dominant in laminar flow. This contradicts the observation of other trailing-edge noise studies at higher Reynolds numbers. However, via acoustic disturbances, the boundary-layer instability may become more significant, through the resonance with the wake instability, excited by increasing a base-flow Mach number. Evidence suggests that this would correspond to the onset of an acoustic feedback loop. The wake-flow frequencies derived by an absolute-instability analysis are compared with the frequencies realized in flow simulations, to clarify the effect of an acoustic feedback mechanism, at a low Reynolds number.  相似文献   

4.
李锋  白鹏  刘强 《气体物理》2017,2(5):1-10
低Reynolds数流动由于自身特点导致气动特性严重恶化,非定常、非线性效应突出且预测困难,加之相关基础理论研究不足,给以临近空间低速飞行器和高性能微小型飞行器为代表的低Reynolds数飞行器的开发和研制带来了瓶颈和挑战.首先概述了飞行器低Reynolds数的范畴、低Reynolds数空气动力学的主要问题与挑战.随后从低Reynolds数层流分离基础理论出发,依次介绍了低Reynolds数层流分离经典理论、低Reynolds数层流分离非定常流动特性、低Reynolds数后缘层流分离泡.在此基础上,通过对经典长层流分离泡与后缘层流分离泡力学特性的差异以及随攻角和Reynolds数的演化规律的详细分析,逐步揭示了一些低Reynolds数复杂气动效应的本质,如小攻角升力系数的非线性效应,翼型随Reynolds数下降气动特性的二次恶化效应等.最后对低Reynolds数流动基础理论的发展过程进行了总结,并对层流分离诱导转捩及再附效应等复杂流动问题进行了展望.   相似文献   

5.
确定分布的展向Lorentz力调制下的槽道湍流涡结构   总被引:1,自引:0,他引:1       下载免费PDF全文
吴文堂  洪延姬  范宝春 《物理学报》2014,63(5):54702-054702
采用直接数值模拟方法,对槽道湍流中确定分布的Lorentz力的流动控制与减阻问题进行研究.讨论了Lorentz力作用于槽道湍流后,流场的特性和涡结构的特性,并对此类Lorentz力对槽道湍流的控制与减阻机理进行了讨论.研究发现:1)Lorentz力诱导的层流流场壁面附近存在梯度极大的展向速度剪切层,该剪切层容易形成流向涡结构;2)在给定合适参数的确定分布的Lorentz力作用下,湍流流场仅剩周期分布的准流向涡;3)与未控制流场相比,控制后的流场中,准流向涡的抬升高度大大降低,从而减小猝发强度,使壁面阻力下降.  相似文献   

6.
本文采用线性传声器阵列分别对具有常规尾缘及锯齿形尾缘的后掠叶片的尾缘噪声进行了实验测量;运用CLEAN-SC数据处理方法精确地识别出叶片尾缘噪声的声学参数.并且基于多组实验结果的对比,深入研究了不同的尾缘锯齿长度、周期、几何比例对后掠叶片尾缘噪声降噪效果的影响.实验结果表明:在低湍流度、自由来流情况下,在总声压级降噪方...  相似文献   

7.
The present study investigates an experimental methodology to determine aeroacoustic emission from vortex–structure interaction by means of Time-resolved Particle Image Velocimetry (TR-PIV). The aeroacoustic investigation is conducted on a rod–airfoil configuration at Re=6000 based on the rod diameter. The time-resolved velocity field obtained from 2D PIV is employed to evaluate the instantaneous planar pressure field by spatial integration of the Navier–Stokes equations under the assumption of 2D incompressible flow. The instantaneous pressure field computed on a control surface approximating that of the physical airfoil is used as source term of Curle's aeroacoustic analogy in both a distributed and a lumped formulation to obtain the far-field acoustic prediction. The spanwise coherence function of velocity and pressure fluctuations is determined by means of additional experiments, and is applied to weight the contributions at different frequencies. Results are compared with far-field microphone measurements in terms of spectra and directivity pattern. A good agreement is observed for the tonal component corresponding to the periodic interaction of the Kármán vortices with the airfoil leading edge. The contributions at higher frequencies also show an acceptable agreement when the spanwise coherence is taken into account.  相似文献   

8.
In this paper, the aerodynamic performance of the S series of wind turbine airfoils with different relative cambers and their modifications is numerically studied to facilitate a greater understanding of the effects of relative camber on the aerodynamic performance improvement of asymmetrical blunt trailing-edge modification. The mathematical expression of the blunt trailing-edge modification profile is established using the cubic spline function, and S812, S816 and S830 airfoils are modified to be asymmetrical blunt trailing-edge airfoils with different thicknesses. The prediction capabilities of two turbulence models, the k-ω SST model and the S-A model, are assessed. It is observed that the k-ω SST model predicts the lift and drag coefficients of S812 airfoil more accurately through comparison with experimental data. The best trailing-edge thickness and thickness distribution ratio are obtained by comparing the aerodynamic performance of the modifications with different trailing-edge thicknesses and distribution ratios. It is, furthermore, investigated that the aerodynamic performance of original airfoils and their modifications with the best thickness of 2% c and distribution ratio being 0:4 so as to analyze the increments of lift and drag coefficients and lift–drag ratio. Results indicate that with the increase of relative camber, there are relatively small differences in the lift coefficient increments of airfoils whose relative cambers are less than 1.81%, and the lift coefficient increment of airfoil with the relative camber more than 1.81% obviously decreases for the angle of attack less than 6.3°. The drag coefficient increment of S830 airfoil is higher than that of S816 airfoil, and those of these two airfoils mainly decrease with the angle of attack. The average lift–drag ratio increment of S816 airfoil with the relative camber of 1.81% at different angles of attack ranging from 0.1° to 20.2° is the largest, closely followed by S812 airfoil. The lift–drag ratio increment of S830 airfoil is negative as the angle of attack exceeds 0.1°. Thus, the airfoil with medium camber is more suited to the asymmetrical blunt trailing-edge modification.  相似文献   

9.
The laminar burning velocity is a fundamental property that is extensively used in the study and modelling of premixed combustion processes. A counterflow flame configuration is commonly used to measure this quantity for different combustion systems. In this procedure, the burning velocities are typically measured at various low stretch conditions and the unstretched burning velocity is extrapolated from these measurements. This extrapolation is done assuming a theoretically one-dimensional system along the centre-line. We analyse the validity of this assumption by performing DNS studies with finite rate chemistry of the experimental counterflow configuration. The extrapolation process using one-dimensional computations is performed on the DNS data and the extrapolated value is compared to the computed laminar burning velocity for the chemical mechanism used. We show that the assumption works well if the nozzle exit velocity has a nearly top-hat profile. For non-uniform velocity profiles, it is shown that the temperature curvature at the centre-line becomes important. This effect cannot be captured by the one-dimensional formulation. Thus, experimental studies measuring laminar burning velocity need to ensure that the nozzle velocity profile is very close to uniform. The extrapolation to zero stretch using 1D counterflow simulations can be performed in different ways. Based on the results obtained in this paper, a simple and accurate extrapolation method is proposed.  相似文献   

10.
This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier–Stokes based transition model using laminar kinetic energy concept, namely the k ? kL ? ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k ? kL ? ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from ?3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.  相似文献   

11.
An experimental investigation into the response of an airfoil in turbulence was undertaken and the results are presented in a two part series of papers. The effects of mean loading on the airfoil response are investigated in Part 1 with the likely origins discussed in this paper (Part 2). Unsteady pressure measurements were made on the surface of a NACA 0015 airfoil immersed in grid turbulence (λ/c=13%) for angles of attack α=0-20°. This paper (Part 2) presents the causes of the low-frequency reduction and high-frequency increase observed in measured lift and pressure spectral levels. Scaling lift spectra on the mean lift reveals the increase in lift spectral level for reduced frequencies greater than 10 is closely related to the airfoils mean pressure field. Based on analysis of the chordwise and spanwise pressure correlation length scale, the reduction in lift spectral level at low reduced frequency appears to result from distortion of the inflow by the mean velocity field. A possible model is developed that accurately predicts mean loading effects on lift spectra. This model uses a circular cylinder fit to the airfoil to compute effects of distortion on the inflow turbulence. The distorted inflow velocity spectrum is then used with Amiet's theory to predict the unsteady loading. This model successfully captures the reduction observed in measured lift spectra at low reduced frequencies. Furthermore, it is shown that the angle of attack effects arising from inflow distortion are significant only when the relative scale of the inflow turbulence to airfoil chord is sufficiently small (λ/c=13% for present experiment).  相似文献   

12.
We review the state of the art in measurements and simulations of the behavior of premixed laminar and turbulent flames, subject to differential diffusion, stretch and curvature. The first part of the paper reviews the behavior of premixed laminar flames subject to flow stretch, and how it affects the accuracy of measurements of unstrained laminar flame speeds in stretched and spherically propagating flames. We then examine how flow field stretch and differential diffusion interact with flame propagation, promoting or suppressing the onset of thermodiffusive instabilities. Secondly, we survey the methodology for and results of measurements of turbulent flame speeds in the light of theory, and identify issues of consistency in the definition of mean flame speeds, and their corresponding mean areas. Data for methane at a single operating condition are compared for a range of turbulent conditions, showing that fundamental issues that have yet to be resolved for Bunsen and spherically propagating flames. Finally, we consider how the laminar flame scale response of flames to flow perturbations interacting with differential diffusion leads to very different outcomes to the overall sensitivity of the burning rate to turbulence, according to numerical simulations (DNS). The paper concludes with opportunities for future measurements and model development, including the perennial recommendation for robust archival databases of experimental and DNS results for future testing of models.  相似文献   

13.
Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.  相似文献   

14.
In this paper,the separation-induced transition in an LPT(low-pressure turbine)cascade is investigated at low Reynolds number with DNS(direct numerical simulation).The transition process is accurately predicted giving good agreements between the DNS and experimental results.To illustrate the secondary instability of separation-induced transition in a low-disturbance environment,the results are comprehensively analyzed in both Fourier space and physical space.It is illustrated that the effect of hyperbolic instability dominates around the saddle point of hyperbolic streamlines.This instability mechanism is responsible for the emergence of the streamwise vortices in the braid region.Elongated and intensified because of the“stretching”effect of the background flow,these vortices become the most noticeable characteristic of the flow field.Fundamental modes of small spanwise wavelength are excited in the braid region,so as some low-frequency modes.The elliptical instability plays a minor role than hyperbolic instability.It is also observed that the fundamental mode with a larger spanwise wavelength is unstable in the vortex core which is associated with the deformation of the vortex core via elliptical instability.There is no convincing evidence for the existence of subharmonic instability.  相似文献   

15.
基于等离子体环量控制的翼型气动特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究等离子体环量控制对翼型的影响特性,采用基于唯象学的等离子体气动激励数学模型和二维雷诺平均N-S方程,选取NCCR 1510-7067N环量控制翼型,数值模拟后缘半径对升力和效费比的影响规律,并进行优化。设计最佳后缘半径模型进行低速风洞实验,获得迎角-4~12,速度6,10,15 m/s下的压力分布和升力特性。研究表明:后缘半径过大或过小都不利于Coanda效应的产生,确定最佳后缘半径与弦长的比值为0.048,效费比97.69。低雷诺数下,随着迎角的增加,出现了层流长泡分离和短泡分离,等离子体射流不仅改善了尾部流场,还通过环量增加抑制层流分离,提高了升力。  相似文献   

16.
纳秒脉冲表面介质阻挡等离子体激励唯象学仿真   总被引:8,自引:0,他引:8       下载免费PDF全文
赵光银  李应红  梁华  化为卓  韩孟虎 《物理学报》2015,64(1):15101-015101
结合NS-DBD实验数据和理论分析, 建立NS-DBD单区非均匀唯象学模型, 旨在通过合理的模型进行流动控制仿真, 揭示流动控制机理. 在平板无来流时, 运用单区非均匀唯象学模型, 通过引入涡量输运方程, 求解涡量方程各项, 分析展向涡形成机理. 展向涡主要是由压力升诱导激励区压力梯度和密度梯度的不正交性产生的, 其次是激励区附近流场的对流引起的涡量转移. 圆柱上的激励仿真得到与实验一致的压缩波结构和冲击波位置, 验证了模型合理性. NACA 0015翼型大迎角分离控制的仿真表明, 激励诱导展向涡促使主流和分离流相互作用, 使分离点移向下游; 脉冲激励频率通过诱导展向涡的数量对流动分离产生不同的作用效果, 本文最佳的无量纲激励频率为6.  相似文献   

17.
This paper represents the results of a preliminary study which aims to reduce the airfoil trailing edge self noise by employing non-flat plate type trailing edge serrations. This configuration offers better structural strength and integrity, as well as a more straightforward manufacturing process compared to the conventional flat plate type serrations. We found that the non-flat plate serration not only reduces the broadband self noise significantly, but also eliminates the high-frequency noise that was observed by others who used flat plate type serration. However, due to the presence of certain bluntness at the sawtooth root, vortex shedding noise in a narrow frequency bandwidth is also produced. This extraneous noise is found to be less significant if a wider-angle serration is used. To increase the effectiveness of the proposed serration geometry a hybrid configuration composed of a non-flat plate type trailing edge serration with woven-wire mesh screen is employed for the reduction of the narrowband vortex shedding noise.  相似文献   

18.
3004铝合金“反常”锯齿屈服现象的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
彭开萍  陈文哲  钱匡武 《物理学报》2006,55(7):3569-3575
在应变速率为5.56×10-5s-1—5.56×10-3s-1的范围内,在不同温度下(从223K至773K),对3004铝合金进行系列拉伸试验,探索其锯齿屈服规律;通过激活能的计算、内耗研究、微观组织观察和能谱分析,探讨锯齿屈服的机理与物理本质.结果表明,3004铝合金在形变过程中会出现动态应变时效现象;发现了一种“反常”的锯齿屈服现象:在出现锯齿屈服的温区内,存在锯齿屈服临界应变量转变温度Tt关键词: 动态应变时效 锯齿屈服 铝合金 内耗  相似文献   

19.
By means of direct numerical simulations (DNS) based on the integrodifferential Zakharov equation, we study the long-term evolution of nonlinear random water wave fields. For the first time, formation of powerlike Kolmogorov-type spectra corresponding to weak-turbulent inverse cascade is demonstrated by DNS, and the evolution in time of the resulting spectra is quantitatively investigated. The predictions of the statistical theory for water waves, both qualitative (formation of the direct and inverse cascades, self-similar behavior) and quantitative (the spectra exponents, specific shape of self-similar functions, the rate of time evolution) are found to be in good agreement with the DNS results, except for the initial part of the evolution, where the established statistical theory is not applicable yet and the evolution has a much faster time scale.  相似文献   

20.
Interactions between conical spray flames and sinusoidal velocity modulations due to the propagation of acoustic waves have been studied thanks to direct numerical simulations (DNS). A 2D axi-symmetric configuration has been used to capture the evolution of the pulsating laminar flames. The DNS solver has been coupled with a Lagrangian model to account for the dispersion and evaporation of the liquid fuel in the computational domain. Four main configurations, with a unitary global equivalence ratio, have been studied. Apart from a gaseous reference case, one polydispersed and two monodispersed Bunsen-type injections with various droplets density and inertia have been simulated. DNS results are in good agreement with experimental data. For significant acoustic Stokes numbers, results showed a double effect of the modulations on the flame: a direct disturbance of the flame front and a secondary impact through the local variation of the mixture fraction due to droplets preferential segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号