首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly[(methylamino)borazine] (PolyMAB) green fibers of a mean diameter of 15 μm have been pyrolyzed under ammonia up to 1000°C and heat treated under nitrogen up to 2000°C to prepare boron nitride (BN) fibers. During the polymer-to-ceramic conversion, the mechanical properties of the green fibers increase within the 25-400°C temperature range owing to the formation of a preceramic material and remain almost constant up to 1000°C. Both the crystallinity and the mechanical properties slightly increase within the 1000-1400°C range, in association with the consolidation of the fused-B3N3 basal planes. A rapid increase in tensile strength (σR) and elastic modulus (Young's modulus E) is observed in relation with crystallization of the BN phase for fibers treated between 1400°C and 1800°C. At 2000°C, “meso-hexagonal” BN fibers of 7.5 μm in diameter are finally obtained, displaying values of σR=1.480 GPa and E=365 GPa. The obtention of both high mechanical properties and fine diameter for the as-prepared BN fibers is a consequence of the stretching of the green fibers on a spool which is used during their conversion into ceramic.  相似文献   

2.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

3.
The long-term stability of Pd–23%Ag/stainless steel composite membranes has been examined in H2/N2 mixtures as a function of both temperature and feed pressure. During continuous operation, the membrane shows a good stability at 400 °C while the N2 leakage increases very slowly at a temperature of 450 °C (Pfeed = 10 bar). After 100 days of operation (Pfeed = 5–20 bar, T = 350–450 °C), the N2 permeance equals 7.0 × 10−9 mol m−2 s−1 Pa−1, which indicates that the H2/N2 permselectivity still lies around 500, based on a H2 permeance equal to 3.0 × 10−6 mol m−2 s−1 Pa−1. Despite the generation of small pinholes, a membrane life-time of several (2–3) years (T ≤ 425 °C) is estimated for the experimental conditions employed based on long-term stability tests over 100 days. Post-process characterisation shows a considerable grain growth and micro-strain relaxation in the Pd–23%Ag membrane after the prolonged permeation experiment. Changes in surface area are relatively small. In addition, segregation of Ag to the membrane surfaces is observed. The formation of pinholes is identified as the main source for the increased N2 leakage during testing at higher temperature.  相似文献   

4.
Single crystals of Sr3B2SiO8 were obtained by solid-state reaction of stoichiometric mixture at 1200 °C. The crystal structure of the compound has been solved by direct methods and refined to R1=0.064 (wR=0.133). It is orthorhombic, Pnma, a=12.361(4), b=3.927(1), c=5.419(1) Å, V=263.05(11) Å3. The structure contains zigzag pseudo-chains running along the b axis and built up from corner sharing (Si,B)−O polyhedra. Boron and silicon are statistically distributed over one site with their coordination strongly disordered. Sr atoms are located between the chains providing three-dimensional linkage of the structure.The formation of Sr3B2SiO8 has been studied using annealing series in air at 900-1200 °C. According powder XRD, the probe contains pure Sr3B2SiO8 over 1100 °C. The compound is not stable below 900 °C. In the pseudobinary Sr2B2O5-Sr3B2SiO8 system a new series of solid solutions Sr3−xB2Si1−xO8−3x (x=0-0.9) have been crystallized from melt. The thermal behavior of Sr3B2SiO8 was investigated using powder high-temperature X-ray diffraction (HTXRD) in the temperature range 20-900 °C. The anisotropic character of thermal expansion has been observed: αa= −1.3, αb=23.5, αc=13.9, and αV=36.1×10−6 °C−1 (25 °C); αa= −1.3, αb=23.2, αc=5.2, and αV=27.1×10−6 °C−1 (650 °C). Maximal thermal expansion of the structure along of the chain direction [0 1 0] is caused by the partial straightening of chain zigzag. Hinge mechanism of thermal expansion is discussed.  相似文献   

5.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

6.
The structure of bis(1,1,3,3-tetramethylguanidinium) dichromate was determined from powder X-ray diffraction data. The compound crystallizes in the monoclinic system (space group P21/n) with a = 10.79714 (15) Å, b = 11.75844 (16) Å, c = 8.15097 (11) Å, β = 109.5248 (6)°. The structure consists of dichromate anions (Cr2O72−) stabilized by tetramethylguanidinium cations ([H2NC(N(CH3)2)2]+ or [TMGH]+). Phase transitions of [TMGH]2Cr2O7 were determined by differential scanning calorimetry, thermal gravimetric analysis and in situ Raman spectroscopy, where the decomposition of the matrix into CrOx was found at 171-172 °C. Further heat treatment to above 400 °C resulted in formation of the thermodynamically stable Cr2O3, most likely with the [TMGH]+ cation as reductant. The catalytic activity of [TMGH]2Cr2O7 supported on TiO2 anatase in the selective catalytic reduction (SCR) of nitrogen oxide was also investigated, however only moderate activity was observed in the temperature range 100-400 °C compared to the activity of e.g., vanadia supported on titania.  相似文献   

7.
The crystal structure of a ternary Tm(DBM)3phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM)3phen C59H47N2O7Tm, monoclinic, P21/c, a=19.3216(12) Å, b=10.6691(7) Å, c=23.0165(15) Å, α=90°, β=91.6330(10)°, γ=90°, V=4742.8(5) Å3, Z=4. The properties of the Tm(DBM)3phen complex and the corresponding hybrid mesoporous material [Tm(DBM)3phen-MCM-41] have been studied. The results reveal that the Tm(DBM)3phen complex is successfully covalently bonded to MCM-41. Both Tm(DBM)3phen complex and Tm(DBM)3phen-MCM-41 display typical near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Tm3+ ion, an antenna effect. The full width at half maximum (FWHM) centered at 1474 nm in the emission spectrum of Tm(DBM)3phen-MCM-41 is 110 nm, which is the potential candidate of broadening amplification band from C band (1530-1560 nm) to S+ band (1450-1480 nm) in optical area.  相似文献   

8.
The reaction between lanthanum oxide and strontium carbonate was studied non-isothermally between 350 and 1150 °C at different heating rates, intermediates and the final solid product were characterized by X-ray diffractometry (XRD). The reaction proceeds through formation of lanthanum oxycarbonate La2O(CO3)2, lanthanum dioxycarbonate La2O2CO3, and non-stoichiometric strontium lanthanum oxide La2SrOx (x = 4 + δ). La4SrO7 was found to be the final product which begins to form at ∼700 °C. Li+ doping enhances the formation of the final product as well as commencement of the reactions at lower temperatures.  相似文献   

9.
LaSrMnNbO6 has been synthesized by high temperature solid state reaction under 1% H2/Ar dynamic flow. The structure is determined by Rietveld refinement of the powder X-ray diffraction data. It crystallizes in the monoclinic space group P21/n with the unit cell parameters: a=5.69187(12), b=5.74732(10), c=8.07018(15) Å and β=90.0504(29)°, which were also confirmed by electron diffraction. The Mn2+ and Nb5+ ions, whose valence states are confirmed by X-ray absorption near-edge spectroscopy, are almost completely ordered over the B-site (<1% inversion) of the perovskite structure due to the large differences of both cationic size (0.19 Å) and charge. The octahedral framework displays significant tilting distortion according to Glazer’s tilt system abc+. Upon heating, LaSrMnNbO6 decomposes at 690 °C under O2 flow or at 775 °C in air. The magnetic susceptibility data indicate the presence of long-range antiferromagnetic ordering at TN=8 K; the experimentally observed effective paramagnetic moment, μeff=5.76 μB for high spin Mn2+ (3d5, S=5/2) is in good agreement with the calculated value (μcalcd=5.92 μB).  相似文献   

10.
11.
In this study we present results of the conductivity and resistance to thermooxidative and condensation reactions of a highly phosphonated poly(pentafluorostyrene) (PWN2010) and of its blends with poly(benzimidazole)s (PBI). This polymer, which combines both: (i) a high degree of phosphonation (above 90%) and (ii) a relatively high acidity (pKa (–PO3H2 ↔ –PO3H) ∼ 0.5) due to the fluorine neighbors, is designed for low humidity operating fuel cell. This was confirmed by the conductivity measurements for PWN2010 reaching σ = 5 × 10−4 S cm−1 at 150 °C in dry N2 and σ = 1 × 10−3 S cm−1 at 150 °C (λ = 0.75). Furthermore, this polymer showed only 48% of anhydride formation when annealing it at T = 250 °C for 5 h and only 2% weight loss during a 96 h Fenton test. These properties combined with the ability of the PWN2010 to form homogeneous blends with polybenzimidazoles resulting in stable and flexible polymer films, makes PWN2010 a very promising candidate as a polymer electrolyte for intermediate- and high-temperature fuel cell applications.  相似文献   

12.
The tetradendate macrocyclic ligands, [H2L-1 = 5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene] and [H2L-2 = 6,14-dioxa-8,16-dimethyl-1,5,9,13-tetraazacyclohexadeca-1,9-diene] have been prepared by the condensation reaction of 1,2-diaminoethane and 1,3-diaminopropane, respectively, with ethyl acetoacetate in methanol at room temperature. The diorganotin(IV) complexes of general formula [R2Sn(L-1)/R2Sn(L-2)] (R = Me, n-Bu and Ph) have been synthesized by template condensation reaction of 1,2-diaminoethane or 1,3-diaminopropane and ethyl acetoacetate with R2SnCl2 (R = Me or Ph) or n-Bu2SnO in 2:2:1 molar ratio at ambient temperature (35 ± 2 °C) in methanol. The solid-state characterization of resulting complexes have been carried out by elemental analysis, IR, recently developed DART-mass, solid-state 13C NMR, 119mSn Mössbauer spectroscopic studies. These studies suggest that in all of the studied complexes, the macrocyclic ligands act as tetradentate coordinating through four nitrogen atoms giving a skew-trapezoidal bipyramidal environment around tin center. Since, the studied diorganotin(IV) macrocyclic complexes are insoluble in common organic solvents, hence good crystals could not be grown for single crystal X-ray crystallographic studies. Thermal studies of all of the studied complexes have also been carried out in the temperature range 0-1000 °C using TG, DTG and DTA techniques. The end product of pyrolysis is SnO2 confirmed by XRD analysis.  相似文献   

13.
The phase diagram of the system CdI2-Ag2Se is studied by means of X-ray diffraction, differential thermal analysis and measurements of the density of the material. The unit cell parameters of the intermediate phase 2CdI2·3Ag2Se were determined a = 0.6387 Å, b = 4.311 Å, c = 4.044 Å; α = 113.72°, β = 90.27° and γ = 94.85°. The intermediate phase 2CdI2·3Ag2Se has a polymorphic transition at 125 °C. It melts incongruently at 660 °C.  相似文献   

14.
Crystal structure of LiB3O5 (a framework of [B3O5] rings and Li atoms located in interspaces) was refined at high temperatures using single-crystal X-ray diffraction, MoKα-radiation, anharmonic approximation, orthorhombic; Pna21; Z=4; 20 °C (a=8.444, b=7.378, c=5.146 Å, 1411 F(hkl), R=0.022); 227 °C (a=8.616, b=7.433, c=5.063 Å, 1336 F(hkl), R=0.026), 377 °C (a=8.746, b=7.480, c=5.013 Å, 1193 F(hkl), R=0.035). A high mobility of Li atoms and their highly asymmetric vibrations are revealed. Ellipsoid of Li thermal vibrations is oviform. Li is shifted on heating to 0.26 Å mainly along a-axis causing high thermal expansion in this direction; Li temperature factors are multiplied by 4 on heating. Rigid boron-oxygen groups in LiB3O5 remain practically stable on heating similar to α-Na2B8O13 and α-CsB5O8. At the same time these groups rotate relative to each other like hinges leading to extremely anisotropic thermal expansion (αa=101, αb=31, αc=−71, αv=60×10−6 °C−1, 20-530 °C, HTXRPD data).  相似文献   

15.
The reaction of Os3(CO)12 with an excess of 1-hydroxypyridine-2-thione and Me3NO gives three mononuclear osmium complexes Os(CO)22-SC5H4N(O))2 (1), Os(CO)22-SC5H4N(O))(η2-SC5H4N) (2), and Os(CO)22-SC5H4N)2 (3). The results of single-crystal X-ray analyses reveal that complex 1 contains two O,S-chelate pyridine-2-thione N-oxide (PyOS) ligands, whereas complex 2 contains one O,S-chelate PyOS and one N,S-chelate pyridine-2-thiolate group. The unique structure of 2 provides evidence of the pathway for this transformation. When this reaction was monitored by 1H NMR spectroscopy the triosmium complexes Os3(CO)10(μ-H)(μ-η1-S-C5H4N(O)) (4) and Os3(CO)9(μ-H)(μ-η12-SC5H4N(O)) (5) were identified as intermediates in the formation of the mononuclear final products 1-3. The proposed pathway is further supported by the observation of several dinuclear osmium intermediates by electrospray ionization mass spectrometry. In addition, the reaction of Os3(CO)12 with 1-hydroxypyridine-2-thione in the absence of Me3NO at 90 °C generated mononuclear complex 2 as the major product along with smaller amounts of complexes 1 and 3. These results suggest that the N-oxide facilitates the decarbonylation reaction. Crystal data for 1: monoclinic, space group C2/c, a = 26.9990(5) Å, b = 7.6230(7) Å, c = 14.2980(13) Å, β = 101.620(2)°, V = 2882.4(4) Å3, Z = 8. Crystal data for 2: monoclinic, space group C2/c, a = 5.7884(3) Å, b = 13.9667(7) Å, c = 17.2575(9) Å, β = 96.686(1)°, V = 1385.69(12) Å3, Z = 4.  相似文献   

16.
Diphenyl-1,3,4-oxadiazole (DPO) crystallization experiments from solutions clearly reveal the polymorphism of the substance. Besides the formerly known centrosymmetric monoclinic structure with space group P21/c (DPO I) a new monoclinic structure with the non-centrosymmetric space group Cc is found (DPO II): a=2.4134(4) nm, b=2.4099(3)  nm, c=1.2879(2) nm, β=110.048(3)°, and V=7.0363(17) nm3. The asymmetric unit contains six independent molecules in a complex packing motif. A re-determination of the crystal structure of DPO I at room temperature gives lattice parameters a=0.51885(6) nm, b=1.8078(2) nm, c=1.21435(14) nm, β=93.193(3)°, and V=1.1373(2) nm3. X-ray measurements at 363 K show a significant increase of the unit cell volume by 1.6%. Differences between both structures concerning morphology and characteristic Raman bands are outlined in detail. DSC investigations show an irreversible transition from DPO I to DPO II at 97 °C. DPO II does not show any transition in the temperature range up to the melting point at 141 °C. The non-centrosymmetric DPO II structure shows triboluminescence.  相似文献   

17.
The salt [KrF][AuF6] has been prepared by the direct oxidation of gold powder in anhydrous HF at 20 °C using the potent oxidative fluorinating agent KrF2. The KrF+ salt readily oxidizes molecular oxygen at ambient temperature to yield [O2][AuF6]. Variable temperature Raman spectroscopy has been used to identify a reversible phase transition in [O2][AuF6], which occurs between −114 and −118 °C. Single crystal X-ray diffraction has been used to characterize the low-temperature, α-phase of [O2][AuF6]. The phase transition is attributed to ordering of the O2+ cation in the crystal lattice, which is accompanied by minor distortions of the AuF6 anion. The α-phase of [O2][AuF6] crystallizes in the triclinic space group , with a=4.935(6) Å, b=4.980(6) Å, c=5.013(6) Å, α=101.18(1)°, β=90.75(2)°, γ=101.98(2)°, V=342.97 Å3, Z=1, and R1=0.0481 at −122 °C. The structure of the precursor, [KrF][AuF6], has also been determined by single crystal X-ray diffraction and crystallizes in the monoclinic space group Cc with a=7.992(3) Å, b=7.084(3) Å, c=10.721(4) Å, β=105.58(1)°, V=584.8(4) Å3, Z=4 and R1=0.0389 at −125 °C. The KrF+ and AuF6 ions interact by means of a FKr---FAu fluorine bridge that is bent by 125.3(7)° about the bridge fluorine. The KrFt and Kr---Fb bond lengths in [KrF][AuF6] were determined to be 1.76(1) and 2.15(1) Å, respectively. The energy minimized structures of the [KrF][AuF6] ion-pair and the AuF6 anion have been determined at the Hartree-Fock (HF), MP2 and local density functional (LDF) levels of theory. These calculations have also been used to assign the vibrational spectrum of the [KrF][AuF6] ion-pair in greater detail and to reassign the vibrational spectrum of the AuF6 anion.  相似文献   

18.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

19.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   

20.
The new compound Cs4P2Se10 was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. 31P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of −52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs4P2Se10 has the triclinic space group P-1 with a=7.3587(11) Å, b=7.4546(11) Å, c=10.1420(15) Å, α=85.938(2)°, β=88.055(2)°, and γ=85.609(2)° and contains the [P2Se10]4− anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe4) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs4P2Se10 was recovered upon annealing. The static 31P NMR spectrum at 350 °C contained a single peak with a −35 ppm chemical shift and a ∼7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号