首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel and facile method for the fabrication of ZnO hollow spheres. In this approach, zinc ions were first adsorbed onto the surfaces of sulfonated polystyrene core-shell template spheres, and then reacted with NaOH to form a ZnO crystal nucleus, which was followed by a growth step to form ZnO nanoshells. During the formation of ZnO nanoshells or later on, the template spheres were "dissolved" in the same media to obtain ZnO hollow spheres directly. Neither additional dissolution nor calcination process was needed in this method to remove the templates, and the reaction conditions were very mild: neither high temperature nor long time was needed. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were used to investigate the morphology, surface composition, crystalline structure, specific surface area, and porosity of the ZnO hollow spheres, respectively. UV-visible spectra show that these ZnO hollow spheres had very good photocatalytic activity.  相似文献   

2.
本文以脲为沉淀剂,通过化学沉淀法成功实现了锐钛矿型二氧化钛壳层在空心玻璃微珠表面的可控组装,从而制备出玻璃/二氧化钛核壳空心微球,并通过XRD、SEM、EDX和拉曼光谱对其结构、形貌、粒径、壳厚和化学组成进行了表征.提出了二氧化钛在空心玻璃微珠表面的定向生长的可能机制和形成过程.  相似文献   

3.
Highly sensitive WO3 hollow-sphere gas sensors   总被引:2,自引:0,他引:2  
Li XL  Lou TJ  Sun XM  Li YD 《Inorganic chemistry》2004,43(17):5442-5449
In this paper, we describe how WO(3) hollow spheres have been synthesized in solution phase by the controlled hydrolysis of WCl(6) using novel carbon microspheres as the templates. All of the products were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized spheres had large diameters of about 400 nm and thin shells of about 30 nm composed of numerous small nanocrystals. Prompted by the porous structure and small crystal size of the shell wall, we constructed WO(3) hollow-sphere gas sensors and found that these sensors had good sensitivity to alcohol, acetone, CS(2), and other organic gases.  相似文献   

4.
通过以二氧化硅粒子作为模板和金纳米粒子为表面晶种的方法制备了壳厚度可控的镍空心球。采用TEM﹑XRD对二氧化硅/镍复合球和镍空心球进行了表征和研究。结果表明镍纳米壳是由似针状的面心立方的镍纳米粒子构成的,碱溶液处理过程不影响镍纳米壳的形貌。高温处理显示镍空心球具有良好的热稳定性。  相似文献   

5.
通过简单的两步法合成了不同负载量的Au/ZnO空心球。采用扫描电子显微镜(SEM),X射线衍射(XRD),X射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-Vis DRS)对样品的形貌、结构、组成和晶相等进行一系列的表征。以罗丹明B (RhB)为目标降解物,探究了Au/ZnO空心球的光催化活性。结果表明,适量Au修饰的ZnO光催化剂在混合光下20 min内对RhB的降解率达到73%。利用表面光电压谱(SPS)和瞬态光电压(TPV)技术,探讨了Au修饰后对ZnO光诱导电荷转移行为与光催化性能之间的关系。结果表明,混合光照下Au/ZnO空心球光降解性能的提高主要归因于作为电子受体的Au纳米粒子与ZnO之间形成的强的电子相互作用。适量Au纳米粒子的负载能够提高ZnO空心球中光生载流子的分离效率,相应地延长载流子的传输时间,增加光生电荷的寿命,从而促进其光催化活性的提高。  相似文献   

6.
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 °C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail.  相似文献   

7.
一种制备单分散SiO2空心微球的新方法   总被引:4,自引:0,他引:4  
在乙醇/氨水介质中, 分别以分散聚合和无皂乳液聚合方法制得的不同粒径聚苯乙烯(PS)微球为模板, 以正硅酸乙酯(TEOS)为前驱体, 通过控制介质中氨水的初始体积, 一步法制得了不同粒径的单分散SiO2空心微球. 整个过程无需添加其它溶剂溶解或高温煅烧的方法来除去模板微球. 对SiO2空心微球进行测试表征, 提出了SiO2空心微球的可能形成机制.  相似文献   

8.
ZnS hollow microspheres were synthesized by a dl ‐aspartic acid mediated hydrothermal route. dl ‐aspartic acid plays an important role as crystal growth soft template, which regulates the release of Zn2+ ions for the formation of ZnS hollow spheres. The formation of these hollow spheres was mainly attributed to an Ostwald ripening process. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), UV/Vis spectroscopy (UV), and photoluminescence (PL). The shells of the microspheres were composed of ZnS quantum dots (QDs) with the average size of 2.31 nm. The average microspheres diameter is 0.5–3.5 μm. The shell thickness of the hollow sphere is ≈?300 nm. The optical bandgap energy increased significantly compared to the bulk ZnS material due to the strong quantum confinement effect. Two strong emissions at ≈?425 nm and ≈?472 nm in the photoluminescence (PL) spectrum of ZnS hollow microspheres indicate strong quantum confinement because of the presence of QDs.  相似文献   

9.
Nearly monodispersed silica-poly(methacrylic acid) (SiO 2-PMAA) core-shell microspheres were synthesized by distillation-precipitation polymerization from 3-(trimethoxysilyl)propylmethacrylate-silica (SiO 2-MPS) particle templates. SiO 2-PMAA-SiO 2 trilayer hybrid microspheres were subsequently prepared by coating of an outer layer of SiO 2 on the SiO 2-PMAA core-shell microspheres in a sol-gel process. pH-Responsive PMAA hollow microspheres with flexible (deformable) shells were obtained after selective removal of the inorganic SiO 2 core from the SiO 2-PMAA core-shell microspheres by HF etching. The pH-responsive properties of the PMAA hollow microspheres were investigated by dynamic laser scattering (DLS). On the other hand, concentric and rigid hollow silica microspheres were prepared by selective removal of the PMAA interlayer from the SiO 2-PMAA-SiO 2 trilayer hybrid microspheres during calcination. The hybrid composite microspheres, pH-sensitive hollow microspheres, and concentric hollow silica microspheres were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis.  相似文献   

10.
采用阳离子聚苯乙烯微球作为模板,钛酸四丁酯为钛源,氨水为催化剂,制备了中空TiO_2微球.采用X射线衍射、扫描电镜及比表面测定仪对其形貌和结构进行了表征,并考察了模板粒径、钛源用量以及催化剂用量对中空TiO_2微球形貌的影响.通过物理共混法将其引入至聚丙烯酸酯乳液中并成膜,研究了复合薄膜的保温性能、抗紫外性能及力学性能.结果表明,锐钛矿相中空TiO_2微球模板粒径、钛源用量以及催化剂用量影响中空TiO_2微球的空心尺寸、壁厚及壳层致密性.中空TiO_2微球可显著提升聚丙烯酸酯薄膜的保温性能、抗紫外性能和力学性能.采用不同粒径的模板制备的中空TiO_2微球对复合薄膜的各项性能均有影响,其中模板粒径为140 nm时复合薄膜性能最优,光反射率提升63%,导热系数降低27%,且在波长小于360 nm范围内,紫外透过率几乎为0,抗张强度增加100%,断裂伸长率提升62%.  相似文献   

11.
Uniform inorganic- (PbS) coated polymer core-shell and hollow PbS microspheres were prepared by an easy and economical approach. Monodisperse polystyrene (PS) microspheres were used as templates, as well as the core of the composite spheres; lead sulfide shells were obtained through the reaction of lead acetate (Pb(CH3COO)2) and thioacetamide (TAA) at room temperature. The morphologies and structures of the as-synthesized products were systematically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectra (FTIR). The fluorescence property of the as-synthesized product was also investigated. A reasonable mechanism for the formation of PS–PbS core-shell and hollow PbS microspheres was discussed. According to a series of parallel experiments, effects of related experimental parameters were also carefully investigated, such as the molar ratio of Pb(CH3COO)2 to TAA, reaction temperature, etc.  相似文献   

12.
ZnO hollow spheres with diameters ranging from 400 to 600 nm and the thickness of shell approximate 80 nm were synthesized by a simple polyoxometalate-assisted solvothermal route without using any templates. The effect of polyoxometalate concentration, reaction time and temperature on the formation of the hollow spheres was investigated. The results indicated that the hollow spheres were composed of porous shells with nanoparticles and polyoxometalate play a key role in controlling morphology of ZnO. A possible growth mechanism based on polyoxometalate-assisted assembly and slow Ostwald ripening dissolution in ethanol solution is tentatively proposed. In addition, the room temperature photoluminescence spectrum showed that the ZnO hollow spheres exhibit exciting emission features with wide band covering nearly all the visible region.  相似文献   

13.
Mesoporous,hollow Zn O microspheres were synthesized via a hydrothermal method,using glycerol and zinc acetate as the starting materials.XRD and FESEM analysis showed that the surface morphology of the spheres with a Wurtzite structure could be reasonably adjusted by varying the weight ratio(Rw) of Zn(CH3COO)2 2H2O:H2O:C3H8O3.The responses of the gas sensor based on the spheres to 100 ppm ethanol and 100 ppm acetone are 18.9 and 10.4,respectively.The response and recovery times of the sensor to ethanol and acetone are 2 s and 3 s,3 s and 5 s,respectively.The hollow spheres show an intense UV emission at 392 nm and a broad blue-green emission at 488 nm.Interestingly,a light trapping phenomenon is revealed by UV emission and scattering measurements on the microspheres,which can be attributed to the mesoporous shell and hollow structure of the microsphere.  相似文献   

14.
Sonochemical synthesis of hollow PbS nanospheres   总被引:5,自引:0,他引:5  
PbS hollow nanospheres with diameters of 80-250 nm have been synthesized by a surfactant-assisted sonochemical route. The nanostructures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), (high-resolution) transmission electron microscopy [(HR)TEM], and scanning electron microscopy (SEM) images. Structural characterization indicates that shells of the hollow spheres are composed of PbS nanoparticles with diameters of about 12 nm. The formation of the hollow nanostructure was explained by a vesicle-template mechanism, in which sonication and surfactant play important roles. Furthermore, uniform silica layers were successfully coated onto the hollow spheres via a modified St?ber method to enhance their performance for promising applications.  相似文献   

15.
通过葡萄糖协助的水热以及随后的退火处理两步法成功制备了系列ZnO/In2O3复合空心球. X射线衍射谱(XRD)表明, 经500 ℃退火制得的ZnO/In2O3复合空心球中ZnO以非晶态存在, 但是随着退火温度的提高, 其逐渐转变为纤锌矿结构. 场发射扫描电子显微镜(FE-SEM)和透射显微镜(TEM)结果表明, ZnO/In2O3复合材料具有空心球结构, 复合纳米颗粒之间结合紧密. 将ZnO/In2O3复合空心球组装成薄膜光电极, 研究了其光电催化降解葡萄糖的性能. 结果表明, 700 ℃退火处理的ZnO/In2O3复合空心球薄膜电极可产生最高的光致电流密度. 通过光致发光光谱(PL)发现, 与ZnO或In2O3空心球相比, ZnO/In2O3复合空心球的发光强度猝灭效果明显. 这是由于复合材料中晶界处产生的p-n结电场, 降低了光生电子-空穴对的复合几率, 从而使更多的光生电子可迁移到电极表面.  相似文献   

16.
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core-shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.  相似文献   

17.
Monodispersed hollow ZnS microspheres have been successfully synthesized by a facile ethylenediamine tetraacetic acid (EDTA) mediated hydrothermal route. The sizes of the hollow spheres vary from 1.5 to 3.5 microm when the reaction temperature varied from 130 to 230 degrees C. The formation of these hollow spheres is attributed to the oriented aggregation of ZnS nanocrystals around the gas-liquid interface between H(2)S and water. EDTA plays important role as chelating ligand and capping reagent, which regulates the release of Zn(2+) ions for the formation of ZnS hollow spheres. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy, photoluminescence, and Raman spectroscopy. The obtained ZnS hollow spheres show a sharp and photostable UV emission approximately 370 nm, which is attributed to the recombination process associated with interstitial sulfur vacancy.  相似文献   

18.
ZnO nanobelts, hollow microspheres, and urchins have been prepared on copper foil via a simply low temperature evaporation route. The microstructure, morphologies, and photolu-minescence of the ZnO nanostructures were studied with X-ray diffraction, Raman spectra, scanning electron microscopy and photoluminescence spectra. The width of the nanobelts was about 500 nm and the length was longer than 10μm. The diameter of the hollow microspheres was between 5 and 10μm. A possible growth mechanism of the nanobelts, microspheres and urchins was proposed. The photoluminescence spectrum exhibited strong deep level energy emissions and a weak near band edge emission. These ZnO nanostructures on a copper substrate have the advantages of naturally good adhesion and electrical connection between the ZnO nanostructures and the conductive substrate.  相似文献   

19.
Y_2O_2S:Eu~(3+)空心微球的制备与性能   总被引:2,自引:0,他引:2  
以单分散的碳球为硬模板,采用均匀共沉淀法合成了Y_2O_2S:Eu~(3+)心微球.通过XRD、SEM、TEM、荧光光谱对其进行表征.X射线衍射测试表明所制备的Y_2O_2S:Eu~(3+)空心微球为单相,六方晶.扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试表明所制备的Y_2O_2S:Eu~(3+)空心微球粒径小,分布均匀.激发和发射光谱测试表明Eu~(3+)离子能有效地掺入硫氧化钇基质中,并具有良好的发光性能.  相似文献   

20.
热解-还原法制备单分散Fe3O4亚微空心球   总被引:3,自引:0,他引:3  
闫共芹  官建国  王维 《物理化学学报》2007,23(12):1958-1962
在用模板法水解FeCl3制备单分散聚(苯乙烯-共-丙烯酸)/Fe2O3[P(St-co-AA)/Fe2O3]核壳粒子的基础上, 于N2环境下热解内核直接得到了单分散的磁性Fe3O4亚微空心球. 用透射电镜(TEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)、振动样品磁强计(VSM)表征并测试了空心微球的结构形貌、成分以及静磁性能. 结果表明, P(St-co-AA)/Fe2O3核壳粒子在热处理过程中, 由于内核热解生成的有机小分子将Fe2O3 壳层同时还原为Fe3O4, 从而生成了粒径和壁厚均匀的单分散Fe3O4亚微空心球. 该空心微球在室温下的饱和磁化强度、剩余磁化强度和矫顽力分别为50.91 A·m2·kg-1、3.97 A·m2·kg-1和2.33 kA·m-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号