首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.  相似文献   

2.
采用吸附和程序升温脱附(TPD)技术研究了介质阻挡放电等离子体对CuZSM-5催化剂上吸附的氮氧化物作用. 实验表明, 介质阻挡放电等离子体使催化剂表面吸附的NO及Cu活性位上吸附的NOx物种脱附, 并引发表面化学反应生成新的氮氧化物. 对于NO/N2体系, 介质阻挡放电等离子体与吸附在CuZSM-5上NO作用, 主要生成N2O和O2. 在富氧体系NO/O2/N2, 则生成较大量的N2O、NO2和NO. 等离子体预处理活性下降的CuZSM-5, 可明显提高其催化分解NO活性. 对比有或无介质阻挡放电等离子体预处理NO或NO/O2饱和吸附的CuZSM-5上的NO-TPD结果表明, 等离子体提高催化剂活性的原因与其使催化剂Cu活性位上吸附的NOx物种脱附有关.  相似文献   

3.
The formation yields of 2- and 3-pentyl nitrate from the reactions of 2- and 3-pentyl peroxy radicals with NO have been measured at room temperature over the pressure range 51-744 Torr of N2 + O2, using the OH radical-initiated reaction of n-pentane to generate the pentyl peroxy radicals. The influence of 2- and 3-pentyl nitrate formation from the reaction of 2- and 3-pentoxy radicals with NO2 was investigated by conducting experiments with the initial CH3ONO (the OH radical precursor) and NO concentrations being varied by a factor of 5-10. From experiments carried out with low initial CH3ONO and NO concentrations, the measured yields of 2-pentyl nitrate and 3-pentyl nitrate, defined as ([pentyl nitrate] formed)/([n-pentane] reacted), each increase with increasing total pressure, from 1.10 +/- 0.09% and 1.11 +/- 0.10%, respectively, at 51 +/- 1 Torr of O2 to 5.48 +/- 0.51% and 4.07 +/- 0.31%, respectively, at 737 +/- 4 Torr of N2 + O2.  相似文献   

4.
Interaction of N2O at low temperatures (473-603 K) with Fe-ZSM-5 zeolites (Fe, 0.01-2.1 wt %) activated by steaming and/or thermal treatment in He at 1323 K was studied by the transient response method and temperature-programmed desorption (TPD). Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) of NO adsorbed at room temperature as a probe molecule indicated heterogeneity of surface Fe(II) sites. The most intensive bands were found at 1878 and 1891 cm(-1), characteristic of two types mononitrosyl species assigned to Fe2+(NO) involved in bi- and oligonuclear species. Fast loading of atomic oxygen from N2O on the surface and slower formation of adsorbed NO species were observed. The initial rate of adsorbed NO formation was linearly dependent on the concentration of active Fe sites assigned to bi- and oligonuclear species, evolving oxygen in the TPD at around 630-670 K. The maximal coverage of a zeolite surface by NO was estimated from the TPD of NO at approximately 700 K. This allowed the simulation of the dynamics of the adsorbed NO formation at 523 K, which was consistent with the experiments. The adsorbed NO facilitated the atomic oxygen recombination/desorption, the rate determining step during N2O decomposition to O2 and N2, taking place at temperatures > or =563 K.  相似文献   

5.
Described are studies directed toward elucidating the controversial chemistry relating to the solution phase reactions of nitric oxide with the iron(II) porphyrin complex Fe(TPP)(NO) (1, TPP = meso-tetraphenylporphinato2-). The only reaction observable with clean NO is the formation of the diamagnetic dinitrosyl species Fe(TPP)(NO)2 (2), and this is seen only at low temperatures (K(1) < 3 M(-1) at ambient temperature). However, 1 does readily react reversibly with N2O3 in the presence of excess NO to give the nitro nitrosyl complex Fe(TPP)(NO2)(NO) (3), suggesting that previous claims that 1 promotes NO disproportionation to give 3 may have been compromised by traces of air in the nitric oxide sources. It is also noted that 3 undergoes reversible loss of NO to give the elusive nitro species Fe(TPP)(NO2) (4), which has been implicated as a powerful oxygen atom transfer agent in reactions with various substrates. Furthermore, in the presence of excess NO2, the latter undergoes oxidation to the stable nitrato analogue Fe(TPP)(NO3) (5). Owing to such reactivity of Fe(TPP)(NO2), flash photolysis and stopped-flow kinetics rather than static techniques were necessary for the accurate measurement of dissociation equilibria characteristic of Fe(TPP)(NO2)(NO) in 298 K toluene solution. Flash photolysis of 3 resulted in competitive NO2 and NO dissociation to give Fe(TPP)(NO) and Fe(TPP)(NO2), respectively. The rate constant for the reaction of 1 with N2O3 to generate Fe(TPP)(NO2)(NO) was determined to be 1.8 x 10(6) M(-1) s(-1), and that for the NO reaction with 4 was similarly determined to be 4.2 x 10(5) M(-1) s(-1). Stopped-flow rapid dilution techniques were used to determine the rate constant for NO dissociation from 3 as 2.6 s(-1). The rapid dilution experiments also demonstrated that Fe(TPP)(NO2) readily undergoes further oxidation to give Fe(TPP)(NO3). The mechanistic implications of these observations are discussed, and it is suggested that NO2 liberated spontaneously from Fe(P)(NO2) may play a role in an important oxidative process involving this elusive species.  相似文献   

6.
氧化铈表面NO的热脱附性能*钟依均(浙江师范大学化学系,浙江金华321004)罗孟飞黄宇增朱波袁贤鑫(杭州大学催化研究所,杭州310028)关键词一氧化氮,热脱附,二氧化铈,表面反应CeO2作为汽车尾气净化三效催化剂的助剂,由于其特殊的性能越来越引起...  相似文献   

7.
The interaction of NO3 free radical and N2O5 with laboratory flame soot was investigated in a Knudsen flow reactor at T = 298 K equipped with beam-sampling mass spectrometry and in situ REMPI detection of NO2 and NO. Decane (C10H22) has been used as a fuel in a co-flow device for the generation of gray and black soot from a rich and a lean diffusion flame, respectively. The gas-phase reaction products of NO3 reacting with gray soot were NO, N2O5, HONO, and HNO3 with HONO being absent on black soot. The major loss of NO3 is adsorption on gray and black soot at yields of 65 and 59%, respectively, and the main gas-phase reaction product is N2O5 owing to heterogeneous recombination of NO3 with NO2 and NO according to NO3 + {C} --> NO + products. HONO was quantitatively accounted for by the interaction of NO2 with gray soot in agreement with previous work. Product N2O5 was generated through heterogeneous recombination of NO3 with excess NO2, and the small quantity of HNO3 was explained by heterogeneous hydrolysis of N2O5. The reaction products of N2O5 on both types of soot were equimolar amounts of NO and NO2, which suggest the reaction N2O5 + {C} --> N2O3(ads) + products with N2O3(ads) decomposing into NO + NO2. The initial and steady-state uptake coefficients gamma 0 and gamma ss of both NO3 and N2O5 based on the geometric surface area continuously increase with decreasing concentration at a concentration threshold for both types of soot. gamma ss of NO3 extrapolated to [NO3] --> 0 is independent of the type of soot and is 0.33 +/- 0.06 whereas gamma ss for [N2O5] --> 0 is (2.7 +/- 1.0) x 10(-2) and (5.2 +/- 0.2) x 10(-2) for gray and black soot, respectively. Above the concentration threshold of both NO3 and N2O5, gamma ss is independent of concentration with gamma ss(NO3) = 5.0 x 10(-2) and gamma ss(N2O5) = 5.0 x 10(-3). The inverse concentration dependence of gamma below the concentration threshold reveals a complex reaction mechanism for both NO3 and N2O5. The atmospheric significance of these results is briefly discussed.  相似文献   

8.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

9.
Uptake experiments of NO3 on mineral dust powder were carried out under continuous molecular flow conditions at 298 +/- 2 K using the thermal decomposition of N2O5 as NO3 source. In situ laser detection using resonance enhanced multiphoton ionization (REMPI) to specifically detect NO2 and NO in the presence of N2O5, NO3 and HNO3 was employed in addition to beam-sampling mass spectrometry. At [NO3] = (7.0 +/- 1.0) x 10(11) cm(-3) we found a steady state uptake coefficient gamma(ss) ranging from (3.4 +/- 1.6) x 10(-2) for natural limestone to (0.12 +/- 0.08) for Saharan Dust with gamma(ss) decreasing as [NO3] increased. NO3 adsorbed on mineral dust leads to uptake of NO2 in an Eley-Rideal mechanism that usually is not taken up in the absence of NO3. The disappearance of NO3 was in part accompanied by the formation of N2O5 and HNO3 in the presence of NO2. NO3 uptake performed on small amounts of Kaolinite and CaCO3 leads to formation of some N2O5 according to NO((3ads)) + NO(2(g)) --> N2O(5(ads)) --> N2O(5(g)). Slow formation of gas phase HNO3 on Kaolinite, CaCO3, Arizona Test Dust and natural limestone has also been observed and is clearly related to the presence of adsorbed water involved in the heterogeneous hydrolysis of N2O(5(ads)).  相似文献   

10.
In the present work, phenylperoxy radicals were generated by stationary 254 nm photolysis of iodobenzene and nitrosobenzene in the presence of O(2) and NO(2) at 298 K and a total pressure of 1 bar (M = N(2)). Experiments were performed on time scales of seconds or minutes in a temperature controlled photoreactor made of quartz (v = 209 L). Major gas phase products identified and quantified in situ by long-path IR absorption include N(2)O(5), NO, HONO, HNO(3), CO, and o-nitrophenol. In addition, evidence is presented for the formation of an aerosol consisting of p-nitrophenol. The occurrence of N(2)O(5) as a major product in both reaction systems, the strong loss of NO(2) in the iodobenzene system and the comparison of measured product distributions with the results of numerical model calculations suggest that the reaction C(6)H(5)O(2) + NO(2) --> C(6)H(5)O + NO(3), k(5)occurs in both photolysis systems, a major part of the NO(3) being scavenged as N(2)O(5). The results of ab initio calculations imply that proceeds via a short-lived peroxynitrate intermediate. In the photolysis of nitrosobenzene-NO(2)-O(2)-N(2) mixtures, NO and NO(2) compete for C(6)H(5)O(2) radicals. Comparison of measured and modelled product distributions allows to set a lower limit of k(5) > 1 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K. This lower limit is consistent with the assumption that k(5) is equal to the high pressure recombination rate constant of RO(2) + NO(2) --> RO(2)NO(2) reactions, i.e. with k(5) approximately 7 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 1bar.  相似文献   

11.
The interaction of NO(2) with TiO(2) solid films was studied under UV irradiation using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. HONO, NO, and N(2)O were observed as the products of the reactive uptake of NO(2) to the illuminated TiO(2) surface with the sum of their yields corresponding nearly to 100% of the nitrogen mass balance. The yield of the products was measured as a function of different parameters such as irradiance intensity, relative humidity (RH), temperature, and concentrations of NO(2) and O(2). The yield of N(2)O was found to be 0.15 ± 0.05 independent of the experimental conditions. The distribution of the products between NO and HONO was found to be independent of temperature in the range T = 280-320 K and was governed by relative humidity: increase in RH led to lower NO and higher HONO yield, with a maximum of nearly 65% reached at ~5% RH. Presence of molecular oxygen was shown to shift the HONO/NO distribution to HONO at low RH (<5%) with no effect at higher RH where the HONO yield is maximum. The following values for the yield of the products of NO(2) interaction with pure TiO(2) under real atmospheric conditions can be recommended from this work: 0.65 ± 0.10, 0.05 ± 0.05, and 0.15 ± 0.05 for HONO, NO, and N(2)O, respectively. The mechanism of the photoinitiated heterogeneous reaction and possible atmospheric implications of the obtained results are discussed.  相似文献   

12.
Oxidation of CO by pre-adsorbed NO has been studied on planar Ir(210) and nanofaceted Ir(210) with average facet sizes of 5 nm and 14 nm by temperature programmed desorption (TPD). Both surfaces favor oxidation of CO to CO(2), which is accompanied by simultaneous reduction of NO with high selectivity to N(2). At low NO pre-coverage, the temperature (T(i)) for the onset of CO(2) desorption as well as CO(2) desorption peak temperature (T(p)) decreases with increasing CO exposure, and NO dissociation is affected by co-adsorbed CO. At high NO pre-coverage, T(i) and T(p) are independent of CO exposure, and co-adsorbed CO has no influence on dissociation of NO. Moreover, at low NO pre-coverage, planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO(2): T(i) and T(p) are much lower on planar Ir(210) than that on faceted Ir(210). In addition, faceted Ir(210) with an average facet size of 5 nm is more active for oxidation of CO to CO(2) than faceted Ir(210) with an average facet size of 14 nm, i.e., oxidation of CO by pre-adsorbed NO on faceted Ir(210) exhibits size effects on the nanometer scale. In comparison, at low O pre-coverage planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO(2) but no evidence has been found for size effects in oxidation of CO by pre-adsorbed oxygen on faceted Ir(210) for average facet sizes of 5 nm and 14 nm. The TPD data indicate the same reaction pathway for CO(2) formation from CO + NO and CO + O reactions on planar Ir(210). The adsorption sites of CO, NO, O, CO + O, and CO + NO on Ir are characterized by density functional theory.  相似文献   

13.
The catalytic CO + NO reaction to form CO2, N2, and N2O has been studied on a Pd(111) surface at pressures up to 240 mbar using in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS). At 240 mbar, for a pressure ratio of PCO:PNO = 3:2 and under reaction conditions, besides adsorbed CO, the formation of isocyanate (-NCO) was observed. Once produced at 500-625 K, the isocyanate species was stable within the entire temperature range studied (300-625 K). On the other hand, its formation required a total CO + NO pressure of at least 0.6 mbar, illustrating the importance of in situ infrared experiments under high-pressure conditions. The significance of the isocyanate formation for the CO + NO reaction on Pd(111) is discussed.  相似文献   

14.
Boughriet A  Wartel M  Fischer JC 《Talanta》1986,33(5):385-390
Knowing the values of the equilibrium constants corresponding to the reactions N(2)O(4) right harpoon over left harpoon 2NO(2) and N(2)O(4) right harpoon over left harpoon NO(+) + NO(3)(-) in sulpholane, we have undertaken the electrochemical study of N(2)O(4) by means of linear and cyclic voltammetry at the platinum electrode. The N(2)O(4) species undergoes one oxidation step N(2)O(4) right harpoon over left harpoon 2NO(2) right harpoon over left harpoon 2NO(2)(+) + 2e and two reduction steps NO(2) + N(2)O(4) + e(-)right harpoon over left harpoon N(2)O(3) + NO(3)(-) (1st wave), followed by 3N(2)O(4) + 2e(-) right harpoon over left harpoon 2N(2)O(3) + 2NO(3)(-), N(2)O(4) + e(-) right harpoon over left harpoon NO + NO(3)(-), 2N(2)O(3) + e(-) right harpoon over left harpoon 3NO + NO(3)(-) (2nd wave). The redox properties of N(2)O(4) are complicated by trace quantities of water because of the formation of the electroactive species N(2)O(3), HNO(3) and HNO(2) according to N(2)O(4) + H(2)O right harpoon over left harpoon HNO(2) + HNO(3) and N(2)O(4) + HNO(2) right harpoon over left harpoon N(2)O(3) + HNO(3). The standard potentials of the couples concerned have been evaluated and are discussed. sont discutés et évalués.  相似文献   

15.
The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to relative humidity levels of 30 and 60%. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.  相似文献   

16.
We investigated the reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of solid polycyclic aromatic hydrocarbons (PAHs) using a coated wall flow tube reactor coupled to a chemical ionization mass spectrometer. The PAH surfaces studied were the 4-ring systems pyrene, benz[a]anthracene, and fluoranthene. Reaction of NO3 radicals with all three PAHs was observed to be very fast with the reactive uptake coefficient, gamma, ranging from 0.059 (+0.11/-0.049) for benz[a]anthracene at 273 K to 0.79 (+0.21/-0.67) for pyrene at room temperature. In contrast to the NO3 reactions, reactions of the different PAHs with the other gas-phase species (N2O5, NO2, HNO3, and O3) were at or below the detection limit (gamma 相似文献   

17.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

18.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

19.
Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.  相似文献   

20.
When a Ne:H2:N2O mixture is co-deposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, NH2NO+ is stabilized in sufficient concentration for detection of five of its vibrational fundamentals. Their assignments are supported by isotopic substitution studies and by the results of unrestricted B3LYP/cc-pVTZ calculations. Electron recombination results in the stabilization of NH2NO, for which the previously reported argon-matrix assignments are confirmed and extended. The OH-stretching fundamental of NNOH+ also is present in the spectrum of the initial sample deposit, but because of proton sharing with the neon matrix is shifted 43.3 cm(-1) from the gas-phase band center. The OD-stretching fundamental of NNOD+ is identified for the first time in the present study. An absorption at 2311.1 cm(-1) is contributed by the NN-stretching vibration of a complex of N2, probably with an ionic species. On prolonged visible and near-ultraviolet irradiation of the deposit, absorptions of the binary N2...H2O complex become increasingly prominent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号