首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.  相似文献   

2.
3.
Zhang Z  Wang J  Hui L  Li L 《Journal of chromatography. A》2011,1218(31):5336-5343
Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and comparison with conventional CIEF were carried out by using bovine serum albumin (BSA) tryptic peptides. It was shown that the MA-CIEF could provide more efficient, reliable and faster separation with improved sequence coverage when coupled to MALDI-FTMS. Analyses of orcokinin family neuropeptides from crabs Cancer borealis and Callinectes sapidus brain extracts have been conducted using the established MA-CIEF/MALDI-FTMS platform. Increased number of neuropeptides was observed with significantly enhanced MS signal in comparison with direct analysis by MALDI-FTMS. The results highlighted the potential of MA-CIEF as an efficient fractionation tool for coupling to MALDI MS for neuropeptide analysis.  相似文献   

4.
Changes in serum lipidome and in tissue lipidome are associated with cancer. In this study, tissue mass spectrometry imaging (MSI) and serum lipid profiling by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) were performed to investigate significantly changed lipids in both tumor (malignant thyroid cancer (MTC) and benign thyroid tumor (BTT)) tissues and sera. Y-scatterplots of variable importance in the projection (VIP) values vs. fold change values indicate that change trends in the levels of ten lipids (i.e., phosphatidylcholine (PC)(34:1), PC(36:1), PC(38:6), phosphatidic acid (PA) (36:2), PA(36:3), PA(38:3), PA(38:4), PA(38:5), PA(40:5), and sphingomyelin (SM)(34:1)) in both tissues and sera from MTC patients, BTT patients, and normal individuals are significantly associated with these three types of pathophysiological status. In order to examine their diagnostic ability, 289 serum samples from 124 MTC patients, 43 BTT patients, and 122 normal controls were randomly divided into the training set and validation set. A biomarker of PC(34:1) exhibited excellent diagnostic ability to differentiate both MTC and BTT patients from normal individuals, with an area under the receiver operating characteristic (ROC) curve value of 0.984, a sensitivity of 96.4 %, and a specificity of 92.7 %. A panel which included PA(36:3) and SM(34:1) could distinguish between MTC and BTT, with an area under receiver operating characteristic curve (AUC) of 0.961, a sensitivity of 87.8 %, and a specificity of 92.9 %. It is worth noting that a panel consisting of PC(34:1), PA(36:3), and SM(34:1) could differentiate MTC patients from both BTT patients and normal individuals, with an AUC of 0.841, a sensitivity of 86.6 %, and a specificity of 75.5 %.
Figure
Comparison of tissue lipid Profiling and serum lipid profiling using MALDI-FTICR MS to select thyroid disease-specific lipids  相似文献   

5.
Posttranslational modifications such as glycosylation can play a fundamental role in signaling pathways that transform an ordinary cell into a malignant one. The development of a protocol to detect these changes in the preliminary stages of disease can lead to a sensitive and specific diagnostic for the early detection of malignancies such as ovarian cancer in which differential glycan patterns are linked to etiology and progression. Small variations in instrument parameters and sample preparation techniques are known to have significant influence on the outcome of an experiment. For an experiment to be effective and reproducible, these parameters must be optimized for the analyte(s) under study. We present a detailed examination of sample preparation and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS) analysis of O-linked glycans globally cleaved from mucin glycoproteins. Experiments with stable isotope-labeled biomolecules allowed for the establishment of appropriate acquisition times and excitation voltages for MALDI-FT-ICR-MS of oligosaccharides. Quadrupole ion guide optimization studies with mucin glycans identified conditions for the comprehensive analysis of the entire mass range of O-linked carbohydrates in this glycoprotein. Separately optimized experimental parameters were integrated in a method that allowed for the effective study of O-linked glycans. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A new scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) ion source for high spatial resolution has been developed for linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The source is fully compatible with commercial ion trap flanges (such as the LTQ series, Thermo Fisher Scientific). The source is designed for atmospheric pressure (AP) operation but is also suitable for mid-pressure operation. The AP mode is especially useful for investigating volatile compounds. The source can be interchanged with other ion sources within a minute when operated in the AP mode. Combining high-lateral resolution MALDI imaging with high mass resolution and high mass accuracy mass spectrometry, available in the FT-ICR mode, provides a new quality of analytical information, e.g. from biological samples. First results obtained with the new ion source demonstrate a maximum lateral resolution of 0.6 by 0.5 microm. Depending on the limit of detection of the chosen mass analyzer, however, the size of the focus had to be enlarged to a diameter of up to 8 microm in the FT-ICR mode, in order to create enough ions for detection. Mass spectra acquired for analytical imaging were obtained from single laser pulses per pixel in all the experiments. This mode allows us to investigate biological thin sections with desorption focus diameters in the micrometer range, known to cause complete evaporation of material under the laser focus with a very limited number of laser pulses. As a first example, peptide samples deposited in microstructures were investigated with the new setup. A high quality and validity of the acquired images were obtained in the ion trap mode due to the low limit of detection. High mass resolution and accuracy but poorer image quality were obtained in the ICR mode due to the lower detection sensitivity of the ICR detector.  相似文献   

7.
The dynamic range of Fourier transform ion cyclotron mass spectrometry (FTICR) is typically limited by the useful charge capacity of an FTICR cell (to approximately 10(6) to 10(7) elementary charges) and the minimum number of ions required to produce a useful signal (approximately 10(2) elementary charges). We show that the expansion of the dynamic range by 2 orders of magnitude can be achieved by preselecting lower abundance species in a quadrupole interface to an electrospray ionization (ESI) source. Ion preselection is then followed by ion accumulation in external to the FTICR cell a linear (2-D) quadrupole trap and subsequent transfer to the region of high magnetic field for gated trapping in the FTICR cell. Two modes of ion preselection, using either the quadrupole filtering mode or rf-only dipolar excitation, were studied and mass resolutions of 30 to 100 were achieved for selective external ion accumulation of peptides and proteins with molecular weights ranging from 500 to 17,000 Da. The ability to selectively eject the most abundant species before trapping in the FTICR has enormous practical benefits for increasing the sensitivity and dynamic range of measurements.  相似文献   

8.
Iron-containing oligonucleotide negative ions can be generated by matrix-assisted laser desorption/ionization from a stainless steel target disk (by either defocusing the laser beam or by mixing iron salts such as FeCl3 with the matrix compound during the sample preparation). High resolution mass measurements reveal the presence of both Fe2+ (as M + Fe - 3H)- and Fe3+ (as M + Fe - 4H)- in the metal-oligonucleotide ions. The presence of Fe3+ is unexpected, and must involve replacement of protons from the nucleic bases or ribose groups as well as the phosphate groups of the oligonucleotides. Inspection of a range of small oligonucleotides and mononucleotides reveals that the presence of both Fe2+ and Fe3+ in the iron-biomolecule complexes is dependent on the number of acidic hydrogens that can be replaced in the oligonucleotide or nucleotide. Collisional dissociation of several metal-tetranucleotide ions revealed that the presence of the iron ion alters the fragmentation observed. The iron atom was observed to be present in all of the fragment ions, and, whenever possible, seemed to enhance the abundance of fragment ions containing both iron and a guanine nucleic base. These results suggest that iron may serve as a useful probe for characterizing phosphorylated biomolecules.  相似文献   

9.
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.  相似文献   

10.
A new ion source has been developed for Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) that enables quick changes between matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) modes. When operating as an ESI source, the sample solution is sprayed through an angled nebulizer. The generated ions pass through a glass capillary followed by a skimmer and three sequential hexapole ion guides. Ions can be accumulated in the third hexapole (storage hexapole) before they are injected into the ICR trap. The second hexapole is mounted on a movable platform which also carries the MALDI sample plate. During the switch from ESI to MALDI, this platform moves the second hexapole out of the hexapole series and locates a MALDI sample plate with 384 sample positions into the area directly in front of the storage hexapole. The storage hexapole is in a medium pressure chamber (MPC) which has windows both for the incoming laser beam and for the observation optics, as well as a gas tube for pulsing collision gas into the chamber. During the MALDI operation the focused laser beam enters the MPC, passes between the hexapole rods and irradiates a MALDI sample on the target plate. The sample molecules are desorbed/ionized into the storage hexapole and simultaneously cooled by collisions with the pulsed gas. Ions desorbed from multiple laser shots can be accumulated in this hexapole before they are transferred to the ICR trap. With the combined ion source a computer-controlled switch between MALDI and ESI modes is possible in less than a minute, depending on the position of the MALDI target on the 384-spot plate. Immediate acquisition of mass spectra is possible after mode switching without the need for tuning or re-calibration.  相似文献   

11.
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.  相似文献   

12.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

13.
A new method of ion deceleration in a Fourier transform ion cyclotron resonance (FTICR) open cell is described that improves the performance of FTICR-MS instruments equipped with an internal source for laser desorption/ionization. Ion deceleration occurs in the front trapping cylinder of an open cylindrical cell. Decelerating voltages up to 100 V can be applied for 10-500 micros to the front cylinder during ion introduction. The deceleration field is uniformly distributed along the cylinder length giving a "smooth" deceleration, which means that the deceleration is effective over a large time interval and a large m/z range. This results in improved trapping efficiency of high-energy ions. We demonstrate efficient trapping of high (m/z 66 kDa) mass ions and the possibility to reduce the width of the kinetic energy distribution of MALDI ions with this arrangement.  相似文献   

14.
Sample preparation techniques for carbohydrate analysis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are explored, with particular emphasis on analyte/matrix co-crystallization procedures. While carbohydrates are known to prefer 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix of choice, these analytes are quite specific about matrix crystal structure, which in turn is dependent on the rate of drying of analyte/matrix spots on the MALDI target. With N-acetylglucosamine (GlcNAc) and N-acetylneuraminic acid (sialic acid or NeuAc) as test monosaccharides, significant increases in ion abundances are demonstrated with 2,5-DHB/NeuAc spots (>10-fold improvement) and 2,5-DHB/GlcNAc spots ( approximately 5-fold improvement) with active drying. The fine structure of crystals generated in active and passive drying was investigated using powder diffraction. Passively dried samples were shown to consist of an ordered polymorph, crystallizing in the space group P2(1)/a, while the actively dried samples produced a disordered phase crystallizing in the space group Pa. These data provide the wherewithal to engineer a matrix best suited for carbohydrate analyses.  相似文献   

15.
Nitration of tyrosine residues in proteins may occur in cells upon oxidative stress and inflammation processes mediated through generation of reactive nitroxyl from peroxynitrite. Tyrosine nitration from oxidative pathways may generate cytotoxic species that cause protein dysfunction and pathogenesis. A number of protein nitrations in vivo have been reported and some specific Tyrosine nitration sites have been recently identified using mass spectrometric methods. High-resolution Fourier transform ion cyclotron resonance mass spectrometry (MALDI) FT-ICR-MS) is shown here to be a highly efficient method in the determination of protein nitrations. Following the identification of nitration of the catalytic site Tyr-430 residue of bovine prostacyclin synthase, we synthesised several model peptides containing both unmodified tyrosine and 3-nitro-tyrosine residues, using solid-phase peptide synthesis (SPPS). The structures of the nitrotyrosine peptides were characterised both by ESI- and by matrix-assisted laser desorption/ionisation (MALDI)-FT-ICR-MS, using a standard ultraviolet (UV) nitrogen nitrogen laser and a 2.97 microm Nd-YAG infrared laser. Using UV-MALDI-MS, 3-nitrotyrosyl-peptides were found to undergo extensive photochemical fragmentation at the nitrophenyl group, which may hamper or prevent the unequivocal identification of Tyr-nitrations in cellular proteins. In contrast, infrared-MALDI-FT-ICR-MS did not produce fragmentation of molecular ions of Tyr-nitrated peptides.  相似文献   

16.
We report the characterization of a recently introduced hybrid ionization source, matrix-assisted laser desorption electrospray ionization (MALDESI), coupled to a quadrupole Fourier transform ion cyclotron resonance mass spectrometry (QFT-ICR-MS) system. We first demonstrate the ability of MALDESI-QFT-ICR MS to directly analyze and provide high mass measurement accuracy (approximately 1 part-per-million) of a polypeptide using internal calibration. Second, we show the potential of MALDESI-QFT-ICR MS for the top-down characterization of multiply charged polypeptide cations. Finally, we demonstrate sub-femtomole detection limits in MALDESI-QFT-ICR MS using a combination of naturally occurring peptides and their respective stable isotope labeled forms. The results presented herein demonstrate the feasibility of several potential applications for MALDESI-QFT-ICR MS for the direct analysis of intact biological molecules.  相似文献   

17.
Operation of any mass spectrometer requires implementation of mass calibration laws to translate experimentally measured physical quantities into a m/z range. While internal calibration in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) offers several attractive features, including exposure of calibrant and analyte ions to identical experimental conditions (e.g. space charge), external calibration affords simpler pulse sequences and higher throughput. The automatic gain control method used in hybrid linear trap quadrupole (LTQ) FT-ICR-MS to consistently obtain the same ion population is not readily amenable to matrix-assisted laser desorption/ionization (MALDI) FT-ICR-MS, due to the heterogeneous nature and poor spot-to-spot reproducibility of MALDI. This can be compensated for by taking external calibration laws into account that consider magnetic and electric fields, as well as relative and total ion abundances. Herein, an evaluation of external mass calibration laws applied to MALDI-FT-ICR-MS is performed to achieve higher mass measurement accuracy (MMA).  相似文献   

18.
The blood free fatty acids (FFAs), which provide energy to the cell and act as substrates in the synthesis of fats, lipoproteins, liposaccharides, and eicosanoids, involve in a number of important physiological processes. In the present study, matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) with ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride (ATNEDC) as a novel MALDI matrix in a negative ion mode was employed to directly quantify serum FFAs. Multiple point internal standard calibration curves between the concentration ratios of individual fatty acids to internal standard (IS, C17:0) versus their corresponding intensity ratios were constructed for C14:0, C16:1, C16:0, C18:0, C18:1, C18:2, C18:3, C20:4, and C22:6, respectively, in their mixture, with correlation coefficients between 0.991 and 0.999 and limits of detection (LODs) between 0.2 and 5.4 μM, along with the linear dynamic range of more than two orders of magnitude. The results indicate that the multiple point internal standard calibration could reduce the impact of ion suppression and improve quantification accuracy in the MALDI mode. The quantitative results of nine FFAs from 339 serum samples, including 161 healthy controls, 118 patients with hyperglycemia and 60 patients without hyperglycemia show that FFAs levels in hyperglycemic patient sera are significantly higher than those in healthy controls and patients without hyperglycemia, and elevated FFA levels are also associated with increased levels of fasting blood glucose (FBG) in hyperglycemic patient sera. Serum FFAs were identified on the basis of the observed accurate molecular masses and reliable isotope distributions obtained by MALDI-FTICR MS.  相似文献   

19.
The combination of laser-induced fluorescence with mass spectrometry opens up new possibilities both for detection purposes and for structural studies of trapped biomolecular ions in the gas phase. However, this approach is experimentally very challenging, and only a handful of studies have been reported so far. In this contribution, a novel scheme for laser-induced fluorescence measurements of ions trapped inside a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer will be introduced. It is based on an open FT-ICR cell design, continuous wave axial excitation of the fluorescence, orthogonal photon collection by fiber optics, and single photon counting detection. Rhodamine 6G ions generated by an internal matrix-assisted laser desorption/ionization source were used to develop and test the set-up. Due to photobleaching processes, the excitation laser power and the observation time window have to be carefully optimized. An ion tomography method was used to align the excitation laser. Potential applications for studying the gas-phase structure of fluorescent biomolecular ions and for investigating fluorescence resonance energy transfer of donor-acceptor pairs will be presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号