首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biosensor for determination of oxalate concentration in urine has been developed by immobilisation of oxalate oxidase and peroxidase on the surface of an interdigitated gold electrode. Enzyme immobilisation was performed using BSA and glutaraldehyde. Biamperometric measurements were made in flow conditions both in aqueous oxalate solutions (tested concentration range between 50 μM and 10 mM) and in real urine samples (tested measuring range between 5 and 100 μM). Optimal working conditions were examined for flow-injection analysis, and good correlation was achieved between added oxalate quantity and the one measured by biosensor in urine matrix (R2 = 0.9983). The influence of some interferences (ascorbic acid, uric acid, paracetamol, acetylsalicylic acid) was also studied using biamperometric measurement mode.  相似文献   

2.
An amperometric biosensor for the determination of creatine was developed. The carbon rod electrode surface was coated with sarcosine oxidase (SOX) and creatine amidinohydrolase by cross-linking under glutaraldehyde vapour. The SOX from Arthrobacter sp. 1–1 N was purified and previously used for creation of a creatine biosensor. The natural SOX electron acceptor, oxygen, was replaced by an redox mediating system, which allowed amperometric detection of an analytical signal at +400-mV potential. The response time of the biosensor was less than 1 min. The biosensor showed a linear dependence of the signal vs. creatine concentration at physiological creatine concentration levels. The optimal pH in 0.1 M tris(hydroxymethyl)aminomethane (Tris)–HCl buffer was found to be at pH 8.0. The half-life of the biosensor was 8 days in 0.1 M Tris–HCl buffer (pH 8.0) at 20 °C. Principal scheme of consecutively followed catalytic reactions used to design a biosensor for the determination of creatine  相似文献   

3.
A selective and sensitive method based on coupling of sequential injection analysis (SIA) and optosensing was developed and applied to the determination of indomethacin in pharmaceutical and urinary samples. After alkaline hydrolysis, the fluorescent product generated from indomethacin is inserted in the flow system, transitorily retained on an active solid support (Sephadex QAE A-25) filling the flowcell, and monitored at 283/371 nm (lamda ex / lamda em). The system was calibrated for two sample volumes, 100 and 1000 microL. It showed a linear dynamic range of 0.5-6.5 ng/mL, with an LOD of 0.15 ng/mL and an RSD of 3.9% (n=10) when the highest sample volume was used. The proposed fluorometric SIA optosensor was applied to the determination of indomethacin in both pharmaceuticals and urine samples, and satisfactory results were obtained.  相似文献   

4.
Summary Two methods based on the use of the normal and stopped-flow injection modes were developed for the determination of oxalate based on its inhibitory effect on the catalytic action of Fe(III) on the 2,4-diaminophenol/hydrogen peroxide system. The linear determination ranges achieved were between 0.2 and 12.0 g ml–1 and between 0.2 and 40.0 g ml–1, the precision was ±5.4%, and ±3.5%, and the sampling rate was 30 and 20 samples h–1 for the normal and stopped-flow method, respectively. Both methods have been applied to the determination of oxalate in urine with excellent results.  相似文献   

5.
Leucine plays an important role in protein synthesis, brain functions, building muscle mass, and helping the body when it undergoes stress. Here, we report a new amperometric bienzyme screen-printed biosensor for the determination of leucine, by coimmobilizing p-hydroxybenzoate hydroxylase (HBH) and leucine dehydrogenase (LDH) on a screen-printed electrode with NADP+ and p-hydroxybenzoate as the cofactors. The detection principle of the sensor is that LDH catalyzes the specific dehydrogenation of leucine by using NADP+ as a cofactor. The product, NADPH, triggers the hydroxylation of p-hydroxybenzoate by HBH in the presence of oxygen to produce 3,4-dihydroxybenzoate, which results in a change in electron concentration at the working carbon electrode, which is detected by the potentiostat. The sensor shows a linear detection range between 10 and 600 μM with a detection limit of 2 μM. The response is reproducible and has a fast measuring time of 5–10 s after the addition of a given concentration of leucine.  相似文献   

6.
Two simple turbidimetric methods for the determination of phosphate in urine are presented and compared. One method is based on the calcium phosphate crystallisation, and the other one on the inhibitory action of phosphate on the calcium carbonate crystallisation. The analytical features of both methods were: linear range = 0.2-1.5 g L-1, LOD = 14 mg L-1 and RSD 1.1-2.0% for the calcium phosphate method, linear range = 0.1-1.8 mg L-1, LOD = 0.01 mg L-1 and RSD 0.97-1.90% for the inhibitory method. Urines with high calcium content (> or = 400 mg L-1) can interfere the method based on the crystallisation of calcium phosphate. This interference was solved using a cation exchange resin as a part of the manifold. Considering the low toxicity of used reagents, these methods can be considered as a contribution to Green Analytical Chemistry.  相似文献   

7.
The use of photochemical reactions in flow injection (FI) is reported. The irradiation of an FI reactor with a suitable source facilitates the development of the iron(III)-oxalate reaction, allowing the amperometric determination of the anion in the range 1.0-13.0 micrograms ml-1, with a relative standard deviation of 1.1% and a sampling frequency of 40 h-1. The proposed method was applied successfully to the determination of oxalate in urine samples.  相似文献   

8.
The present work reports for the first time a simple and rapid method for the spectrofluorimetric determination of lisinopril (LSP) in pharmaceutical formulations using sequential injection analysis (SIA). The method is based on reaction of LSP with o-phthalaldehyde (OPA) in the presence of 2-mercaptoethanol (borate buffer medium, pH=10.6). The emission of the derivative is monitored at 455 nm upon excitation at 346 nm. The various chemical and physical conditions that affected the reaction were studied. The calibration curve was linear in the range 0.3–10.0 mg L–1 LSP, at a sampling rate of 60 injections h–1. Consumption of OPA reagent was significantly reduced compared with conventional flow injection (FI) systems, because only 50 L of OPA was consumed per run. The method was found to be adequately precise (sr=2% at 5 mg L–1 LSP, n=10) and the 3 detection limit was 0.1 mg L–1. The method was successfully applied to the analysis of two pharmaceutical formulations containing LSP. The results obtained were in good agreement with those obtained by use of high-performance liquid chromatography (HPLC), because the mean relative error, er, was <1.8%.  相似文献   

9.
A method for the determination of salicylate in whole blood is described. The assay uses salicylate hydroxylase to convert salicylate to catechol in the presence of NADH and molecular oxygen. The formation of catechol is monitored amperometrically by oxidation at +300 mV vs.Ag/AgCl and the size of the oxidation current is related to the concentration of salicylate in the sample. The reagents are incorporated into the working electrode of a disposable strip, allowing measurements to be made on a drop of blood within 1 min. The functional range of the assay can be extended to the equivalent of 7.2 mM plasma salicylate by incorporating benzoate as a component of the reaction system. The method has the advantages of simplicity and speed compared with standard procedures, and should prove especially useful in suspected overdose situations.  相似文献   

10.
An enzymatic amperometric electrode with extended analytical range and improved stability for oxalate determination has been developed. Glutarlaldehyde/mucin/carbopol matrix was used for the crosslinking of the enzyme between polymeric membranes to form a classical laminate construction (sandwich) and compared with the glutaraldehyde/mucin/enzyme and glutaraldehyde/albumin/enzyme.The use of a sulphonated membrane as internal membrane allowed rejection of the most important electrooxidable urine interferents. The recovery assays were highly satisfactory. The wide linear response in the range 2-400 μM after 1/10 urine dilution (corresponding to 20-4000 μM) made it suitable for clinical range. High correlation with the standard spectrophotometric method was obtained (r2 = 0.98, y = 0.89x, n = 25).  相似文献   

11.
An on-line sequential injection system has been developed for spectrophotometric determination of chloride in drinking mineral, natural, and ground waters. Samples containing different concentrations of chloride were analyzed. The analysis is based on detection of the red iron(III) thiocyanate complex. The complex was monitored spectrophotometrically at 480 nm using de-ionized water as the carrier stream at a flow rate of 3.21 mL min(-1). The method was found to be linear within the range 0-50 mg L(-1) chloride; the detection limit was 3.01 mg L(-1). The fully automated method can be used to analyze 37 samples per hour with a relative standard deviation (RSD) better than 2.50%.  相似文献   

12.
The determination of organophosphorus and carbamate pesticides was carried out using an amperometric transducer based on a robust, polishable and easily mechinable biocomposite. The biocomposite material contains graphite powder, a non-conducting epoxy resin and acetylcholinesterase. The enzyme retains its bioactivity in the rigid epoxy-graphite matric. Measurements were carried out with acetylhiocholine as a substrate. Thiocholine produced by enzymatic hydrolysis was oxidized electrochemically at 70 mV (vs. Ag/AgCl in pH 7.0 buffered solution with 0.1 M phosphate and 0.1 m KCl). The decrease rate of substrate steady-state current after the addition of pesticide was used for evaluation. The method of construction allows for the repetitive use of the electrode. Simple polishing procedures are used to regenerate the bioactive transducer surface.  相似文献   

13.
A simple, specific and sensitive sequential injection analysis (SIA) system based on non-immunoassay fluorescent detection has been developed for the determination of urinary albumin. The specific binding of the dye Albumin Blue 580 (AB 580) to albumin in urine generated high emission fluorescent signals. The excitation and emission wavelengths were set at 590 and 610 nm, respectively. The analytical range was obtained from 1 to 100 mg L−1, with a detection limit of 0.3 mg L−1 (S/N = 3). The SIA system gave high precision with relative standard deviations (R.S.D.s) of 0.9% and 1.4% when evaluated with 15 and 100 mg L−1 albumin (n = 15), respectively. The method exhibited good reproducibility, as assessed by performing four analytical curves on different days, and intra-run CVs (2.3-3.3%) and inter-run CVs (3.8%) were obtained. Rapid operation was achieved with a sample throughput of 37 h−1. This method was successfully applied to the determination of urinary albumin, and the method was highly correlated with the immunoturbidimetric method (r2 = 0.965; n = 72).  相似文献   

14.
We report a method for determining total chromium in tanning samples using sequential injection analysis (SIA) with a diode-array spectrophotometric detector. With a suitable analytical sequence CrO42– is converted to Cr2O72– inside the tubes of the SIA system, after total oxidation of chromium(III). A data matrix is obtained and analysed by several chemometric techniques based on multivariate analysis: principal components analysis, simple-to-use interactive self-modelling mixture analysis, and multivariate curve resolution-alternating least-squares. We studied several samples from different stages of a tanning process. Two of these samples were easily oxidized but the others needed more extreme conditions. The analytical sequence prepared, which was based on obtaining a pH gradient and used H2SO4 as reagent, is valid and independent of the level of oxidation needed for the sample. We established a calibration model and evaluated the figures of merit. In some samples we found interferents. With this method the amounts of chromium in each sample were quantified and the results were statistically similar to those obtained by use of the reference method, atomic absorption spectrometry.  相似文献   

15.
van Staden JF  Mulaudzi LV  Stefan RI 《Talanta》2004,64(5):1196-1202
A simple and rapid on-line spectrophotometric method for the determination of bromate is proposed. The method is based on the reaction of bromate and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-bromo-PADAP) with SCN, a red complex is formed and monitored at 550 nm. The linear range found is between 0.18 and 3.00 mg l−1 with a detection limit of 0.15 mg l−1. The sampling rate was calculated to be 45 samples per hour. The proposed method has a precision of less than 0.8%.  相似文献   

16.
Pinto PC  Saraiva ML  Santos JL  Lima JL 《Talanta》2006,68(3):857-862
A sequential injection analysis (SIA) methodology for the fluorimetric determination of aminocaproic acid in pharmaceutical formulations is proposed. The developed analytical procedure is based on the derivatisation reaction of the aminocaproic primary amine with o-phthalaldehyde (OPA) and N-acetylcysteine (NAC) and fluorimetric detection of the formed product (λex = 350 nm; λem = 450 nm). The implementation of a SIA flow system allowed for the development of a simple, fast and versatile automated methodology, which exhibits evident advantages regarding the US Pharmacopoeia 24 (USP 24) reference procedure. By combining the SIA time-based sample insertion with a subsequent zone sampling approach, which permitted to select for detection of a well-defined sample zone, it was possible to implement an on-line dilution strategy that enabled the expansion of the analytical working range of the methodology, and thus its application in dissolution studies, without manifold re-configuration.Linear calibration plots were obtained for aminocaproic acid concentrations up to 6 × 10−5 mol l−1. The developed methodology exhibit a good precision, with a R.S.D. < 2.0% (n = 15) and the detection limit was 2.5 × 10−7 mol l−1. The obtained results complied with those furnished by the reference procedure with a relative deviation lower than 1.2%. No interference was found.  相似文献   

17.
Frank C  Schroeder F  Ebinghaus R  Ruck W 《Talanta》2006,70(3):513-517
A sequential injection analysis system (SIA) is described which is suited for the fast determination of filterable molybdate reactive phosphate (FRP, 0.2 μm) in coastal waters. It processes up to 270 samples per hour with a detection limit (3σ) of 0.05 μM and is used for surface mapping of phosphate in areas with steep concentration gradients like the Wadden Sea. The determination is based on the reaction of phosphate with acidic molybdate to phosphomolybdate, which builds non-fluorescent ion pairs with rhodamine 6G. The remaining rhodamine fluorescence is detected at 550 nm with an excitation at 470 nm. Syringe pump, valve and detector were controlled by a self made python programme, which was optimised for high speed SIA measurements in monitoring applications.  相似文献   

18.
Wang J  Chen L 《Talanta》1995,42(3):385-389
Ultrasmall-volume measurements of oxidizable compounds have been accomplished by coupling a capillary flow injection system with amperometric detection. Remarkably low (femtomole) mass detection limits result from the combination of nanoliter sample volume and the inherent sensitivity of the wall-jet detector. A substantial economy of reagent consumption and disposal accrues from the operation of the nl/min flow regime. Variables influencing the physical dispersion in the capillary flow injection system, including capillary length, sample volume or flow rate, are explored and optimized.  相似文献   

19.
S Pérez  E Fàbregas 《The Analyst》2012,137(16):3854-3861
A novel amperometric bienzymatic biosensor has been developed based on the incorporation of Lactate Oxidase (LOx) and Horseradish Peroxidase (HRP) into a carbon nanotube/polysulfone membrane by the phase inversion technique onto screen-printed electrodes (SPEs). In order to improve the sensitivity and reduce the working potential, experimental conditions have been optimized and ferrocene has also been incorporated into the membrane as a redox mediator of the enzymatic reactions, which allows the reduction of H(2)O(2) at -100 mV. Measurements were carried out in phosphate buffer solution at pH 7.5 and under batch conditions. The biosensor response time to L-lactate was only 20 s and showed a good reproducibility (RSD 2.7%). Moreover, the detection limit was 0.05 mg L(-1) of l-lactate with a linear interval range from 0.1 mg L(-1) to 5 mg L(-1). Finally, the biosensor has been applied to the determination of l-lactic acid in different wine and beer samples. Then, the results obtained with the biosensor were compared with the ones obtained using, as a reference method, a commercial kit based on spectrophotometric measurements, obtaining an excellent agreement between the results, validating our approach.  相似文献   

20.
A sequential injection analysis (SIA) method for the at-line determination of formaldehyde in a cultivation process of Pichia pastoris is presented. A genetically modified yeast strain was used for cultivation processes wherein methanol feed induced the production of the recombinant protein 1-3del I-TAC. Recurring measurements of culture medium, its blank and including standard addition were performed with Nash reagent using an automated syringe device and photometric detection. The apparatus was coupled via a laboratory-made flow-through adapter to a continuous filtered and cell-medium flow from the bioreactor. At-line monitoring of formaldehyde was performed at two cultivations, each of 250 h during fed-batch phases with glycerol and methanol as carbon sources. High reliability, robustness and reproducibility of the method, the software and the instrumentation as well as the high selectivity of the reaction were demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号