首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anionic, water-soluble siloxane polymers modified with different lengths of alkyl chains have very different selectivity than sodium dodecyl sulfate (SDS) micelles when used as pseudostationary phases in electrokinetic chromatography. The siloxanes in this study are random copolymers with side chains bearing sulfonate groups and alkyl groups (C8, C12, or C18), with the proportion of alkyl groups between 10 and 25% of the total. The differences in selectivity have been studied by linear solvation energy relationships (LSERs). The siloxanes in general have been found to be more cohesive, less polar, more able to interact with solutes through n- and pi-electrons, and more able to accept hydrogen bonds than SDS micelles, while the ability to act as hydrogen bond donors is not significantly different than SDS micelles. In addition, the performance in a pH 7.0 Tris buffer has been investigated and the siloxanes were found to have higher methylene selectivities and more variable electrophoretic mobilities than in borate buffers.  相似文献   

2.
Shamsi SA  Iqbal R  Akbay C 《Electrophoresis》2005,26(21):4138-4152
A series of four acyl and four alkenoxy glycinates (i.e., mono-, di-, tri-, and tetraderivatives of polysodium N-undecenoyl glycinate (poly-SUGs) as well as polysodium N-undecenoxy carbonyl glycinates (poly-SUCGs)) were compared for simultaneous separation of nonhydrogen bonding (NHB), hydrogen-bond acceptor (HBA), and hydrogen-bond donor (HBD) solutes. An increase in the number of glycine units in the polar head group of polymeric surfactant decreases both the retention and the migration window of all solutes with some changes in separation selectivity. The poly(sodium N-undecenoxy carbonyl-glycinate) (poly-SUCG1) with one glycine unit was the least polar surfactant and has the lowest phase ratio, but this monoglycinate surfactant provided the best simultaneous separation of 10-NHBs and 8-HBAs. On the other hand, 9-HBDs were well separated using any of the six mono-, di-, and triglycinate surfactants compared to the two tetraglycinates. Linear solvation energy relationships (LSERs) and separation of the geometrical isomers studies were also performed to further envisage the selectivity differences. From LSER studies, the phase ratio and hydrogen-bond-donating strength of the poly-SUG series of surfactant were found to increase with an increase in the size of the head group, but no clear trends were observed for poly-SUCG surfactants. The cohesiveness for all poly-SUG and poly-SUCG was positive, but the values were generally lower (with exception of the poly(sodium N-undecenoyl glycyl-glycyl-glycinate)) at a higher number of glycine units. Finally, the poly(sodium N-undecenoyl glycinate) and poly-SUCG1 were found to be the two best polymeric surfactants as they provided relatively higher shape selectivity for separation of two of the three sets of geometrical isomers.  相似文献   

3.
Palmer CP 《Electrophoresis》2000,21(18):4054-4072
Several types of synthetic ionic polymers have been employed as pseudostationary phases in electrokinetic chromatography. The polymers have been shown to have some significant advantages and different chemical selectivity relative to conventional surfactant micelles. Polymeric phases are effective for the separation and analysis of hydrophobic and chiral compounds, and may be useful for the application of mass spectrometric detection. Additionally, the polymeric phases often demonstrate unique selectivity relative to micellar phases, and can be designed and synthesized to provide desired selectivity. This review covers efforts to develop and characterize the performance, characteristics, and selectivity of synthetic polymeric pseudostationary phases since their introduction in 1992. Some ideas for the future development of polymeric pseudostationary phases and the role they may play in electrokinetic separations are presented.  相似文献   

4.
A phosphonium surfactant is introduced as a pseudostationary phase for MEKC and its performance and selectivity are compared to that of an analogous ammonium surfactant. The linear solvation energy relationship model has been applied to the two cationic surfactants, allowing the contributions of five chemical factors to the interactions between solutes and the micelles to be evaluated. Differences in the pseudophases cohesivity and acid/base interactions were observed. Despite the significant differences observed in the solvation parameter results the two phases have remarkably similar electrophoretic properties, with the anodic EOF produced by the dynamic coating and the electrophoretic mobility of the two surfactants being statistically equal.  相似文献   

5.
MEKC and the linear solvation energy relationship (LSER) model have been applied to two series of cationic surfactants. The synthetic flexibility of the quaternary ammonium group is exploited to generate the two series, one consisting of linear substitutions and the other incorporating the ammonium into ring structures of varying size. The effects of the head group structure on the CMC, aggregation number, and electrophoretic properties of the surfactants were determined. These surfactants were also characterized with the LSER model, which allowed the contributions of five chemical factors to the interactions between solutes and the micelles to be evaluated. Trends were observed in the cohesivity and polarity of the linear surfactant series, with both increasing with the size of the head group. No trends in the LSER parameters were observed in the cyclic series, but the LSER results do show that the surfactants with cyclic head groups provide a significantly different solvation environment from the linear series. Additional trends were observed in the aggregation behavior and chromatographic properties of the surfactants. These included changes in the CMCs, aggregation numbers, EOF, and electrophoretic mobility of the micelles that correlate to changes in head group size.  相似文献   

6.
The effects of six organic modifiers (urea, methanol, dioxane, tetrahydrofuran, acetonitrile and 2-propanol) on the retention mechanism and separation selectivity of the bulk buffer in micellar electrokinetic capillary chromatography (MECC) with sodium dodecyl sulfate (SDS) micelles as pseudo-stationary phase have been investigated through linear solvation energy relationships (LSERs). It is found that the retention value in MECC systems with or without organic modifier is primarily dependent on the solvophobic interaction and the hydrogen bonding interaction with the solute as proton acceptor, while the dipolar interaction and the hydrogen bonding interaction with the solute as proton donor play minor roles. The effects of the organic modifiers on the solvophobic, dipolar and hydrogen bonding interactions are evaluated in terms of the relationship between regression coefficient of the LSER equations and the modifier concentration. The variations of the solvophobic interaction and the dipolar interaction with change of the modifier concentration can be approximately explained using the solubility parameter and the dipolarity/polarizability parameter of the organic modifier, respectively. However, the relationships between the hydrogen bond acidity and basicity of the bulk buffer and the organic modifiers are rather complicated. Those results may be caused from the displacement of organic modifiers to the water adsorbed on the micellar surface as well as changes in the acidity and basicity of the bulk buffer with the addition of organic modifiers. In addition, it is found that the phase ratio is influenced significantly by the use of organic modifier.  相似文献   

7.
Characterization of retention and selectivity differences between surfactants in micellar electrokinetic chromatography (MEKC) using linear solvation energy relationships (LSERs) has been given a significant amount of attention in the last four years. This report evaluates the validity of using the two LSER models that have been used to fit retention in MEKC in the literature. The results and the fit of the revised model and parameters developed by Abraham and coworkers are compared to the original model developed by Kamlet, Taft, and coworkers. LSERs can generally only be used as a comparative tool to describe the selectivity differences between surfactant systems used in MEKC. With this in mind, it was determined that the results of both models essentially provide the same information about these differences. However, the revised model and parameters have been found to yield a statistically better fit of the MEKC retention data as well as providing more chemically sound LSER coefficients.  相似文献   

8.
Recent research and development efforts concerning polymeric pseudostationary phases (PSPs) for electrokinetic chromatography are reviewed. The introduction of new materials, characterization of structural effects on performance and selectivity, applications, and the use of polymeric PSPs with mass spectrometric detection are considered. Very interesting results concerning the effects of polymer structure have been reported. Significant developments have also been reported in the development of novel applications of polymeric PSPs, particularly for sample preconcentration using micellar affinity gradient focusing. The use of mass spectrometric detection with electrokinetic chromatography has seen significant development, and recent reports indicate that this is a robust and sensitive approach.  相似文献   

9.
Pseudo-stationary phases for electrokinetic chromatography were prepared by the alkylation of starburst dendrimers (SBDs). The SBD-supported pseudo-stationary phase with dodecyl groups showed higher efficiency than short-akyl derivatives, and maintained the hydrophobic property inthe presence of methanol. The dodecyl-modified SBD provided wide migration time windows ar high methanol content to effect the separation of sixteen aromatic hydrocarbons, the priority pollutants designated by EPA, in 65% methanol. The selectivity of polymer-supported pseudo-stationary phase can be varied simply by changing the length of the alkyl groups. The dodecyl SBD showed relatively similar selectivity as sodium dodecyl culfate micelle, whereas short alkyl derivatives showed preference towards rigid and planar compounds based on the rigid and planar compounds based on the rigid polymer backbones. The selectivity of SBD-supported pseudo-stationary phases was dominated by the chain length of the alkyl groups, with the minor effect of the structure of the core and the generation of SBD where alkyl groups were attached.  相似文献   

10.
11.
Anionic siloxane polymers with novel linker arm structures have been synthesized and characterized with respect to their performance and selectivity as pseudophases for electrokinetic chromatography. The linker arm between the siloxane backbone and the sulfonate head group is shorter and does not have the tertiary amine structure found in the siloxane pseudophases studied previously. This change in the linker arm structure and chemistry has dramatic effects on the chemical selectivity of the pseudophases. Linear solvation energy relationship (LSER) studies show that the greatest contributor to the difference in selectivity is that the new polymers are not as nonpolar as those previously studied. This result indicates that siloxane polymers are not by their nature more nonpolar or hydrophobic than other pseudophases. The LSER studies also demonstrate that siloxane pseudophases have a strong tendency to accept hydrogen bonds that cannot be attributed to the presence of the tertiary amine in the linker arm.  相似文献   

12.
Akbay C  Shamsi SA 《Electrophoresis》2004,25(4-5):635-644
The effect of hydrocarbon chain length on chemical selectivity in micellar electrokinetic chromatography (MEKC) was investigated using polymeric sulfated surfactants: poly-(sodium 7-octenyl sulfate), poly(sodium 8-nonenyl sulfate), poly(sodium 9-decenyl sulfate), and poly(sodium 10-undecenyl sulfate). Linear solvation energy relationships (LSERs) and free energy of transfer studies were conducted to predict the selectivity differences between the four polymeric surfactants. The overall nature of the solute/ polymeric micelle interactions was found to be different despite the fact that all polymeric surfactants have the same head group. The polar character and acidic strength of the polymeric surfactant are found to decrease as the hydrocarbon chain length of the surfactant is increased. On the other hand, the polarizability of the polymeric sulfated surfactants increases (upon interacting with solute lone-pair electrons) with increasing hydrocarbon chain length. The LSER results show that the solute size and hydrogen bond accepting ability play the key roles in MEKC retention.  相似文献   

13.
Separation of anabolic and androgenic steroids by micellar electrokinetic chromatography (MEKC) has been little studied. Simultaneous separation of the endogenous alpha-epimers testosterone and epitestosterone has not been achieved with any electroseparation technique. Here, a partial filling micellar electrokinetic chromatographic (PF-MEKC) method is described for the analysis of three endogenous steroid hormones (androstenedione, testosterone, epitestosterone) and two synthetic anabolic steroids (fluoxymesterone, methyltestosterone). The resolution efficiency of single-isomer sulphated gamma-cyclodextrins and the surfactants sodium dodecyl sulphate and sodium taurocholate was exploited. The method is based on the sequential introduction of short plugs of two different pseudostationary phases into the capillary. The separation was completed in less than 10 min. The method can be used in quantitative analysis. Linear correlation was obtained between concentration and peak area of 0.996 or better. The repeatability (RSD) of the compound peak areas ranged from 3.6% (methyltestosterone) to 6.2% (androstenedione). Limits of detection were between 73 microg/L (testosterone) and 160 microg/L (fluoxymesterone). As a demonstration of the method, androstenedione, testosterone and epitestosterone were determined in a spiked urine sample.  相似文献   

14.
One disadvantage of amino acid-based chiral selectors for micellar electrokinetic chromatography (MEKC) is that either they have very low solubility or are insoluble at acidic pHs. In order to increase solubilities at lower pHs, we have synthesized a highly water-soluble achiral surfactant and copolymerized it with an amino acid-based chiral surfactant. These two surfactants were polymerized either separately or at various molar rations of binary solutions, yielding pure molecular or copolymerized surfactant (CoPS), respectively. All surfactants were characterized by use of several analytical techniques prior to using them as novel pseudostationary phases in MEKC. The chromatographic performance of the CoPS in MEKC was tested with chiral and achiral analytes. The highly soluble sulfate head group significantly increased the solubility of amino acid-based CoPS over a wide range of pH. Three chiral binaphthyl derivatives were tested and each surfactant system was found to have different selectivity.  相似文献   

15.
Two cationic gemini surfactants with pyrrolidinium or alkyl ammonium head groups with but-2-yne spacers, but with the same length hydrocarbon chain have been characterized with respect to their aggregation behaviors and separation power as pseudostationary phases (PSPs) for micellar electrokinetic chromatography (MEKC). They were compared with a commonly used PSP, sodium dodecylsulfate (SDS). The results suggest that the head groups of the surfactants have some effect on physicochemical properties such as critical micelle concentration (CMC), C20, γCMC, partial specific volume, methylene selectivity and mobilities of the surfactants. CMC values of G1, G2 and SDS in pure water were found to be 0.82, 0.71, and 8.08 mM, respectively; they were reduced to 0.21, 0.11, and 3.0 mM when measured in 10 mM phosphate buffer at pH 7.0. G1 (αCH2=2.74αCH2=2.74) and G2 (αCH2=2.48αCH2=2.48) provided the most and the least hydrophobic environment, respectively. According to their partial specific volumes, geminis were found to have more flexible structures as compared with sodium dodecylsulfate. The effects of the head group structure were also characterized with the linear solvation energy relationship (LSER) model, which was able to evaluate the role of solute size, polarity/polarizability, and hydrogen bonding on retention and selectivity. The cohesiveness, hydrogen bond acidic and basic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention of the gemini surfactants. It should be noted that with their large positive coefficient a values, G1 and G2 were found to be stronger HB acceptors than anionic and most of the cationic surfactants studied in the literature.  相似文献   

16.
This review article describes some general comments on micellar electrokinetic chromatography (MEKC) from the viewpoint of pseudo-stationary phases and presents a compiled list of surfactants used for MEKC, prepared from published papers. We tried to give comments on some typical surfactants from the practical point of view.  相似文献   

17.
Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate head groups and two hydrophobic undecenyl chains gemini surfactant, was prepared and polymerized to form a polymeric gemini surfactant (i.e., poly-SDUT). These anionic surfactant systems with carboxylate (SDUT and poly-SDUT) and sulfate (sodium dodecyl sulfate, SDS) head groups as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were then applied as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). The SDUT and poly-SDUT were characterized using various analytical techniques. Retention factors of 36 benzene derivatives were calculated in 20 mM phosphate buffer of each surfactant system. The retention factor values of the test solutes show that there are distinctive selectivity differences between the surfactant systems. Solute-pseudostationary phase interactions in MEKC were also examined by determining the free energy of transfer of the substituted functional groups from the aqueous buffer phase into the pseudostationary phase.  相似文献   

18.
A novel method of modifying sodium undecanoyl-L-leucinate (SUL) micelles employed in chiral separation of analytes in micellar electrokinetic chromatography (MEKC) to enhance selectivity toward specific analytes is discussed. The current study aimed at modifying the SUL micelles by introducing different alcohols into the mono-SUL micelles. The micellar solutions were then polymerized in the presence of alcohols followed by postpolymerization extraction of the alcohols to yield alcohol-free polymeric surfactants (poly-L-SUL). The effects of hexanol (C(6)OH) and undecylenyl alcohol (C(11)OH) on micellar properties of this surfactant were investigated by use of surface tensiometry, fluorescence spectroscopy, pulsed field gradient-nuclear magnetic resonance (PFG-NMR), and MEKC. The surface tension and PFG-NMR studies indicated an increase in the critical micelle concentration (cmc) and micellar size upon increasing the alcohol concentration. Fluorescence measurements suggested that alcohols induce closely packed micellar structures. Coumarinic and benzoin derivatives, as well as (+/-)-1, 1'-binaphthyl-2,2'-dihydrogen phosphate (BNP) were used as test analytes for MEKC experiments. Examination of MEKC data showed remarkable resolutions and capacity factors of coumarinic derivatives obtained with modified poly-L-SUL as compared to the unmodified poly-L-SUL. Evaluation of fluorescence, PFG-NMR, and MEKC data suggest a strong correlation between the polarity and hydrodynamic radii of alcohol-modified micelles and the resolution of the test analytes.  相似文献   

19.
Dobos Z  Kiss E  Hallgas B  Kéri G  Idei M 《Electrophoresis》2005,26(4-5):849-857
Micellar proportion, t(prop,mic) = t(mic)/t(m), a quantity expressing how much time is spent by the analyte in the micellar phase related to its whole migration time (t(m)) has been introduced by utilizing the micellar phase residence time (t(mic)). The t(prop,mic) values have been determined for analytes of different chemical structures (alkyl benzene and alkyl phenone homologous series, alcohols, strongly hydrophobic peptides) studied by micellar elektrokinetic chromatography (MEKC) using various cationic and anionic pseudostationary phases. A good linear correlation was obtained between t(prop,mic) and the calculated hydrophobicity (CLOGP) of the analytes for all pseudostationary phases (CLOGP = A.logt(prop,mic) + B). Considering a given pseudostationary phase, t(prop,mic) as a relative quantity is a suitable parameter to characterize and compare experimentally the behavior of the various analytes in MEKC. Applying a set of probe molecules with known hydrophobicity, the CLOGP(50) value (showing the value of hydrophobicity of a virtual molecule spending exactly 50% of its migration time in the pseudostationary phase) has been calculated for each pseudostationary phase applied here. This experimentally determinable numerical value (characterizing the pseudostationary phase) can be utilized to compare the hydrophobicity and hence retention ability of the pseudostationary phases. The t(prop,mic) value was found to be applicable to compare the methylene selectivity of the different pseudostationary phases as well: logt(prop,mic) = A.Z + B, where Z is the number of carbon atoms of the alkyl chain in the alkyl benzene homologous series.  相似文献   

20.
Five electrokinetic chromatography systems were compared concerning retention behavior and lipophilicity. Comparison was based on capacity (retention) factors of some steroidal drugs, and on log P(OW) values derived by the aid of reference substances. In all systems the aqueous buffer consisted of phosphate (20 mM, pH 7.5). Two systems had micelles, three systems microdroplets as negatively charged pseudostationary phases. The micelles were formed by sodium dodecyl sulfate (SDS) and sodium cholate, respectively. One microemulsion consisted (as usual) from octane as oil, butanol as cosurfactant and SDS as charged tenside. Two microemulsions were made from biosurfactants (phosphatidylcholine, isopropylmyristate) to better simulate biopartitioning of the drugs. Even for noncharged analytes a change in migration sequence and thus in log P(OW) was observed for the systems consisting of the biosurfactants, compared to the others. For the former systems, log P(OW) derived from the capacity factors agree for all analytes with those obtained from calculation by computer software based on the structure of the drugs, and with experimental data directly obtained from octanol/water partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号