首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

2.
Robust design optimization (RDO) problems can generally be formulated by incorporating uncertainty into the corresponding deterministic problems. In this context, a careful formulation of deterministic equality constraints into the robust domain is necessary to avoid infeasible designs under uncertain conditions. The challenge of formulating equality constraints is compounded in multiobjective RDO problems. Modeling the tradeoffs between the mean of the performance and the variation of the performance for each design objective in a multiobjective RDO problem is itself a complex task. A judicious formulation of equality constraints adds to this complexity because additional tradeoffs are introduced between constraint satisfaction under uncertainty and multiobjective performance. Equality constraints under uncertainty in multiobjective problems can therefore pose a complicated decision making problem. In this paper, we provide a new problem formulation that can be used as an effective multiobjective decision making tool, with emphasis on equality constraints. We present two numerical examples to illustrate our theoretical developments.  相似文献   

3.
We consider linear programming problems with uncertain objective function coefficients. For each coefficient of the objective function, an interval of uncertainty is known, and it is assumed that any coefficient can take on any value from the corresponding interval of uncertainty, regardless of the values taken by other coefficients. It is required to find a minmax regret solution. This problem received considerable attention in the recent literature, but its computational complexity status remained unknown. We prove that the problem is strongly NP-hard. This gives the first known example of a minmax regret optimization problem that is NP-hard in the case of interval-data representation of uncertainty but is polynomially solvable in the case of discrete-scenario representation of uncertainty.  相似文献   

4.
In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.  相似文献   

5.
In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally.  相似文献   

6.
We study the regularity of the stochastic representation of the solution of a class of initial–boundary value problems related to a regime-switching diffusion. This representation is related to the value function of a finite-horizon optimal stopping problem such as the price of an American-style option in finance. We show continuity and smoothness of the value function using coupling and time-change techniques. As an application, we find the minimal payoff scenario for the holder of an American-style option in the presence of regime-switching uncertainty under the assumption that the transition rates are known to lie within level-dependent compact sets.  相似文献   

7.
The subject of this paper is the formulation and discussion of a semi-infinite linear vector optimization problem which extends multiple objective linear programming problems to those with an infinite number of objective functions and constraints. Furthermore it generalizes in some way semi-infinite programming. Besides the statement of some immediately derived results which are related to known results in semi-infinite linear programming and vector optimization, the problem mentioned above is interpreted as a decision model, under risk or uncertainty containing continuous random variables. Thus we treat the case of an infinite number of occuring states of nature. These types of problems frequently occur within aspects of decision theory in management science.  相似文献   

8.
Motivated by Markowitz portfolio optimization problems under uncertainty in the problem data, we consider general convex parametric multiobjective optimization problems under data uncertainty. For the first time, this uncertainty is treated by a robust multiobjective formulation in the gist of Ben-Tal and Nemirovski. For this novel formulation, we investigate its relationship to the original multiobjective formulation as well as to its scalarizations. Further, we provide a characterization of the location of the robust Pareto frontier with respect to the corresponding original Pareto frontier and show that standard techniques from multiobjective optimization can be employed to characterize this robust efficient frontier. We illustrate our results based on a standard mean–variance problem.  相似文献   

9.
We study optimal stochastic control problems with jumps under model uncertainty. We rewrite such problems as stochastic differential games of forward–backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the nonzero sum games (finding conditions for Nash equilibria). We then apply these results to study robust optimal portfolio-consumption problems with penalty. We establish a connection between market viability under model uncertainty and equivalent martingale measures. In the case with entropic penalty, we prove a general reduction theorem, stating that a optimal portfolio-consumption problem under model uncertainty can be reduced to a classical portfolio-consumption problem under model certainty, with a change in the utility function, and we relate this to risk sensitive control. In particular, this result shows that model uncertainty increases the Arrow–Pratt risk aversion index.  相似文献   

10.
Robust optimization addressing decision making under uncertainty has been very well developed for problems with a single objective function and applied to areas of human activity such as portfolio selection, investment decisions, signal processing, and telecommunication-network planning. As these decision problems typically have several decisions or goals, we extend robust single objective optimization to the multiobjective case. The column-wise uncertainty model can be carried over to the multiobjective case without any additional assumptions. For the row-wise uncertainty model, we show under additional assumptions that robust efficient solutions are efficient to specific instance problems and can be found as the efficient solutions of another deterministic problem. Being motivated by the fact that Internet traffic must be maintained in a reliable yet affordable manner in situations of complex and dynamic usage, we apply the row-wise model to an intradomain multiobjective routing problem with polyhedral traffic uncertainty. We consider traditional objective functions corresponding to link utilizations and implement the biobjective case using the parametric simplex algorithm to compute robust efficient routings. We also present computational results for the Abilene network and analyze their meaning in the context of the application.  相似文献   

11.
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.  相似文献   

12.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

13.
Soft robots are highly nonlinear systems made of deformable materials such as elastomers, fluids and other soft matter, that often exhibit intrinsic uncertainty in their elastic responses under large strains due to microstructural inhomogeneity. These sources of uncertainty might cause a change in the dynamics of the system leading to a significant degree of complexity in its controllability. This issue poses theoretical and numerical challenges in the emerging field of optimal control of stochastic hyperelasticity. This paper states and solves the robust averaged control in stochastic hyperelasticity where the underlying state system corresponds to the minimization of a stochastic polyconvex strain energy function. Two bio-inspired optimal control problems under material uncertainty are addressed. The expected value of the L2-norm to a given target configuration is minimized to reduce the sensitivity of the spatial configuration to variations in the material parameters. The existence of optimal solutions for the robust averaged control problem is proved. Then the problem is solved numerically by using a gradient-based method. Two numerical experiments illustrate both the performance of the proposed method to ensure the robustness of the system and the significant differences that may occur when uncertainty is incorporated in this type of control problems.  相似文献   

14.
The Simplex Stochastic Collocation (SSC) method is an efficient algorithm for uncertainty quantification (UQ) in computational problems with random inputs. In this work, we show how its formulation based on simplex tessellation, high degree polynomial interpolation and adaptive refinements can be employed in problems involving optimization under uncertainty. The optimization approach used is the Nelder-Mead algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method, called Simplex2, is based on (i) a coupled stopping criterion and (ii) the use of an high-degree polynomial interpolation in the optimization space for accelerating some NM operators. Numerical results show that this method is very efficient for mono-objective optimization and minimizes the global number of deterministic evaluations to determine a robust design. This method is applied to some analytical test cases and a realistic problem of robust optimization of a multi-component airfoil.  相似文献   

15.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

16.
17.
Handling uncertainty by interval probabilities is recently receiving considerable attention by researchers. Interval probabilities are used when it is difficult to characterize the uncertainty by point-valued probabilities due to partially known information. Most of researches related to interval probabilities, such as combination, marginalization, condition, Bayesian inferences and decision, assume that interval probabilities are known. How to elicit interval probabilities from subjective judgment is a basic and important problem for the applications of interval probability theory and till now a computational challenge. In this work, the models for estimating and combining interval probabilities are proposed as linear and quadratic programming problems, which can be easily solved. The concepts including interval probabilities, interval entropy, interval expectation, interval variance, interval moment, and the decision criteria with interval probabilities are addressed. A numerical example of newsvendor problem is employed to illustrate our approach. The analysis results show that the proposed methods provide a novel and effective alternative for decision making when point-valued subjective probabilities are inapplicable due to partially known information.  相似文献   

18.
We present in this paper a general decomposition framework to solve exactly adjustable robust linear optimization problems subject to polytope uncertainty. Our approach is based on replacing the polytope by the set of its extreme points and generating the extreme points on the fly within row generation or column-and-row generation algorithms. The novelty of our approach lies in formulating the separation problem as a feasibility problem instead of a max–min problem as done in recent works. Applying the Farkas lemma, we can reformulate the separation problem as a bilinear program, which is then linearized to obtained a mixed-integer linear programming formulation. We compare the two algorithms on a robust telecommunications network design under demand uncertainty and budgeted uncertainty polytope. Our results show that the relative performance of the algorithms depend on whether the budget is integer or fractional.  相似文献   

19.
The paper proposes a Mixed Integer Programming (MIP) formulation of the scheduling problem with total flow criterion on a set of parallel unrelated machines under an uncertainty context about the processing times. To model the problem we assume that lower and upper bounds are known for each processing time. In this context we consider an optimal minmax regret schedule as a suitable approximation to the optimal schedule under an arbitrary choice of the possible processing times.  相似文献   

20.
The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号